Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The effect of processing on the properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers

Chambers, R. and Daly, J.H. and Hayward, D. and Liggat, J.J. (2001) The effect of processing on the properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers. Journal of Materials Science, 36 (15). pp. 3785-3792. ISSN 0022-2461

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Semi-crystalline poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers are biodegradable systems with potential as substrates for use in tissue regeneration. Previous studies have shown that severe embrittlement occurs on storage at room temperature restricting their application possibilities. Concepts such as secondary, advancing crystallisation causing changes in the amorphous/crystalline ratio have been mooted as the cause of the embrittlement. Using films prepared by extrusion and compression moulding procedures we have attempted to probe not only the pure amorphous and crystalline phases but also the interfacial region. Interpretation of dynamic mechanical and dielectric data highlights the changes in the nature of the interfacial region on processing. Moreover, the use of the Thermally Stimulated Discharge technique is a powerful probe for highlighting the morphological changes induced in multiphase systems by the processing step.