Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Optical fibre aligner using deep-etched silicon electrothermal actuator

Syms, R. and Zou, H. and Stagg, J. and Yao, J. and Uttamchandani, D.G. (2004) Optical fibre aligner using deep-etched silicon electrothermal actuator. In: IEEE/LEOS Optical MEMS International Conference on optical MEMS and their applications, 2004-08-22 - 2004-08-26.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A MEMS based in-plane fibre optic alignment device based on a scalable folded buckling mode electro-thermal microactuator has been developed. The bi-directional fibre alignment device, for use with standard single mode optical fibres, is formed from two opposed microactuators, and includes an etched channel with microsprings for fibre retention. The device is fabricated by deep reactive ion etching (DRIE) of bonded silicon-on-insulator. The optical/electrical/mechanical characteristics of the MEMS fibre aligner have been measured. The drive efficiency of the actuator peaks at around 6μm/Watt, whilst when configuring the device as a single mode fibre variable optical attenuator the fibre-to-fibre attenuation of the device is 24dB before failure.