Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Depletion effects and gelation in a binary hard-sphere fluid

Lue, L. and Woodcock, L. V. (1999) Depletion effects and gelation in a binary hard-sphere fluid. Molecular Physics, 96 (9). pp. 1435-1443. ISSN 0026-8976

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A study of the binary hard-sphere fluid with size ratio sigma(B)/sigma(A)= 0.1 is reported. Molecular dynamics and Monte Carlo simulations have been carried out over the mole fraction (x(A)) range 0.002-0.1and over the high density range where several recent authors have predicted a thermodynamic demixing transition on the basis of integral equations. In this region, there is no evidence of such first-order thermodynamic phase separation, or two fluid phases. The effect of the depletion force, arising from the entropic exclusion of B spheres from between two A spheres, as x(B) is increased at constant packing fraction y(A), is to cause a large increase in the partial pressure of A and the radial distribution function of A at contact, a reduction on the mobility of A, and eventually, at a sufficient x(B), the gelation of component A to an open, low coordination, amorphous structure.This gelation transition of A shows discontinuities similar to a glass transition; it can be traced back to the hard sphere glass formation as x(B) approaches zero. Thermodynamic properties are reported over the range studied; and used to evaluate the predictions of current theories and the accuracy of equations of state. The Boublik-Mansoori-Carnahan-Starling-Leland equation is found to be remarkably accurate in this region,over the whole fluid range, but shows systematic deviations at high packing densities.