Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Depletion effects and gelation in a binary hard-sphere fluid

Lue, L. and Woodcock, L. V. (1999) Depletion effects and gelation in a binary hard-sphere fluid. Molecular Physics, 96 (9). pp. 1435-1443. ISSN 0026-8976

Full text not available in this repository. Request a copy from the Strathclyde author


A study of the binary hard-sphere fluid with size ratio sigma(B)/sigma(A)= 0.1 is reported. Molecular dynamics and Monte Carlo simulations have been carried out over the mole fraction (x(A)) range 0.002-0.1and over the high density range where several recent authors have predicted a thermodynamic demixing transition on the basis of integral equations. In this region, there is no evidence of such first-order thermodynamic phase separation, or two fluid phases. The effect of the depletion force, arising from the entropic exclusion of B spheres from between two A spheres, as x(B) is increased at constant packing fraction y(A), is to cause a large increase in the partial pressure of A and the radial distribution function of A at contact, a reduction on the mobility of A, and eventually, at a sufficient x(B), the gelation of component A to an open, low coordination, amorphous structure.This gelation transition of A shows discontinuities similar to a glass transition; it can be traced back to the hard sphere glass formation as x(B) approaches zero. Thermodynamic properties are reported over the range studied; and used to evaluate the predictions of current theories and the accuracy of equations of state. The Boublik-Mansoori-Carnahan-Starling-Leland equation is found to be remarkably accurate in this region,over the whole fluid range, but shows systematic deviations at high packing densities.