Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A liquid-state theory approach to modeling solute partitioning in phase-separated solutions

Lue, L. and Blankschtein, D. (1996) A liquid-state theory approach to modeling solute partitioning in phase-separated solutions. Industrial and Engineering Chemistry Research, 35 (9). pp. 3032-3043. ISSN 0888-5885

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We present a general theoretical framework to model the partitioning behavior of solutes in phase-separated solutions. Our approach makes use of the McMillan-Mayer solution theory to construct a Gibbs free energy model of the solution. This approach has the following desirable features: (i) the molecular structures of the solute species as well as their interactions are explicit inputs, and, therefore, the application of the theory is not restricted to a particular system, and (ii) the accuracy of the theory can be systematically improved, since the various approximations involved in constructing the solution Gibbs free energy model are clearly delineated. We illustrate the practical implementation of the theoretical framework by examining three cases. First, the theory is utilized in the context of a truncated virial expansion in solution concentration to derive an expression for the solute partition coefficient. Second, the theory is utilized to model protein partitioning in two-phase aqueous surfactant solutions. Third, the theory is utilized to qualitatively predict the partitioning behavior of proteins in a model two-phase aqueous polymer solution, accounting explicitly for the semidilute nature of the concentrated polymer solution phase, We find that the theory captures many of the salient experimental trends observed in protein partitioning in two-phase aqueous polymer solutions.