Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Application of integral equation theories to predict the structure of diatomic fluids

Lue, L. and Blankschtein, D. (1995) Application of integral equation theories to predict the structure of diatomic fluids. Journal of Chemical Physics, 102 (10). pp. 4203-4216. ISSN 0021-9606

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We compare the capabilities of the site-site Ornstein-Zernike equation and the Chandler-Silbey-Ladanyi equations to predict the fluid structure for: (i) fluids composed of homonuclear diatomic Lennard‐Jones molecules, and (ii) fluids composed of nonpolar or polar heteronuclear diatomic Lennard‐Jones molecules. In (i), we solve the site-site Ornstein-Zernike (SSOZ) equation with the Percus-Yevick (PY) closure, and the Chandler-Silbey-Ladanyi (CSL) equations with the hypernetted‐chain (HNC) closure to predict the various pair correlation functions at various bond lengths, fluid densities, and temperatures. In general, we find that the CSL equations become more accurate, when compared with computer simulation results, as the bond length increases or as the density decreases, with temperature having no significant effect. In fact, at densities below the critical density, the fluid structure predictions of the CSL equations are found to be in closer agreement with the computer simulation results than those of the SSOZ equation. We also present a general method for computing the low‐order density bridge functions in the context of the CSL equations. In the case of homonuclear diatomic molecules, the zeroth‐order bridge functions, B(0), are found to have little effect on the pair correlation function predictions of the CSL equations. However, the addition of the first‐order bridge functions, B(1), results in a significant improvement of these predictions. In general, the accuracy of the CSL equations, including the various bridge function corrections, is found to increase as the bond length increases or as the density decreases, similar to what we found when the HNC closure (in which the bridge functions are set equal to zero) was used. Finally, in (ii), we find that for nonpolar heteronuclear diatomic fluids, the CSL equations, with the HNC, HNC+B(0), and HNC+B(1) closures, perform very well in predicting the correlation functions between the larger interactions sites. For polar heteronuclear diatomic fluids, we find that the CSL equations seem to offer an improvement over the SSOZ equation. Once again, the CSL equations provide better predictions for the correlation function between the larger interaction sites. © 1995 American Institute of Physics.

Item type: Article
ID code: 38464
Notes: English Article QL734 J CHEM PHYS
Keywords: interaction site fluids, extended rism equation, molecular fluids, dielectric-constant, dipolar diatomics, pair potentials, liquid-nitrogen, phase-diagrams, simulation, thermodynamics, Chemistry, Physical and theoretical chemistry, Physics, Physics and Astronomy(all), Physical and Theoretical Chemistry
Subjects: Science > Chemistry
Science > Chemistry > Physical and theoretical chemistry
Science > Physics
Department: Faculty of Engineering > Chemical and Process Engineering
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 13 Mar 2012 16:14
    Last modified: 05 Sep 2014 04:27
    URI: http://strathprints.strath.ac.uk/id/eprint/38464

    Actions (login required)

    View Item