Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A fast multi-level GFSK matched filter receiver

Tibenderana, C. and Weiss, S. (2004) A fast multi-level GFSK matched filter receiver. In: 6th International Conference on Mathematics in Signal Processing, 2004-12-14 - 2004-12-16.

[img]
Preview
PDF
tibenderana04d.pdf - Accepted Author Manuscript

Download (343kB) | Preview

Abstract

Near optimal reception of a multilevel Gaussian frequency shift keying symbol can be achieved using a matched filter bank (MFB) receiver, which will require M^(K+L-1) filters for M modulation levels, a K-symbol observation interval, and a Gaussian filter with an L-symbol support length. This is prohibitive for most applications for the large values of K necessary to ensure best performance. In this paper we present a recursive algorithm that eliminates redundancy in providing the matched filter outputs by use of a smaller set of 1-symbol long intermediate filters, followed by an iterative process to propagate phase gained over K successive single symbol stages. If exemplarily operated in a Bluetooth receiver, the computational cost can be reduced by two orders of magnitude. Additionally we demonstrate that the intermediate filter outputs provide a means to detect carrier frequency and modulation index offsets, which can be corrected by iteratively recomputing the coefficients of the intermediate filter bank.