Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Phase shifter placement in large-scale systems via mixed integer linear programming

Lima, F.G.M. and Galiana, F. and Kockar, I. and Munoz, J. (2004) Phase shifter placement in large-scale systems via mixed integer linear programming. IEEE Transactions on Power Systems, 18 (3). pp. 1029-1034. ISSN 0885-8950

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper makes use of advances in mixed integer linear programming (MILP) to conduct a preliminary design study on the combinatorial optimal placement of thyristor controlled phase shifter transformers (TCPSTs) in large-scale power systems. The procedure finds the number, network location, and settings of phase shifters that maximize system loadability under the DC load flow model, subject to limits on the installation investment or total number of TCPSTs. It also accounts for active flow and generation limits, and phase shifter constraints. Simulation results are presented for the IEEE 24-, 118-, and 300-bus systems, as well as a 904-bus network. The principal characteristics of our approach are compared with those of other published flexible AC system transmission (FACTS) allocation methods.