Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

The design of a decision support system for the vibration monitoring of turbine generators

Todd, M. and McArthur, S.D.J. and West, G.M. and McDonald, J.R. (2004) The design of a decision support system for the vibration monitoring of turbine generators. In: 39th International Universities Power Engineering Conference (UPEC 2004), 2004-09-06 - 2004-09-08.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Condition Monitoring (CM) systems monitor the health of expensive plant items such as turbine generators. They interpret turbine parameters by signaling an alarm when pre-defined limits are breached. Often these alarms have no further operational consequence but still require investigation by an expert. This is a time consuming and laborious process due to the volume of data interpreted for each alarm. In order to reduce the burden of alarm assessment, a Decision Support System (DSS) is proposed. The DSS will feature a Routine Alarm Assessment (RAA) module which provides an initial analysis of the alarms, highlighting those with no further operational consequence and enabling the expert to focus on those which indicate a genuine problem with the turbine. The structured approach taken to capture and document the expert knowledge on RAA along with the generation of a module specification and the selected IS techniques are outlined. The implementation of an RAA prototype is discussed along with how this will act as a foundation for a full alarm interpretation and fault diagnostic system.