Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Improving the performance of GA-ML DOA estimator with a resampling scheme

Li, M. and Lu, Y. (2004) Improving the performance of GA-ML DOA estimator with a resampling scheme. Signal Processing, 84 (10). pp. 1813-1822. ISSN 0165-1684

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The maximum likelihood (ML) direction of arrival (DOA) estimator computed by genetic algorithm (GA) for the exact global solution gives a superior performance compared to other methods. In this paper, we present a resampling-based scheme to improve its ability to resolve closely spaced sources, and to enhance its global convergence. For this purpose, multiple GA–ML estimators are constructed in a parallel manner based on resampling of a single data set, then those estimates are involved into a competition, and successful results are selected and combined to generate a more accurate estimate. Numerical studies demonstrate that the proposed scheme provides less DOA estimation root-mean-squared error (RMSE), higher source resolution probability and lower resolution threshold signal-to-noise ratio (SNR) than some popular approaches including GA–ML; and this technique is not sensitive to the array geometry.