Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Improving the performance of GA-ML DOA estimator with a resampling scheme

Li, M. and Lu, Y. (2004) Improving the performance of GA-ML DOA estimator with a resampling scheme. Signal Processing, 84 (10). pp. 1813-1822. ISSN 0165-1684

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The maximum likelihood (ML) direction of arrival (DOA) estimator computed by genetic algorithm (GA) for the exact global solution gives a superior performance compared to other methods. In this paper, we present a resampling-based scheme to improve its ability to resolve closely spaced sources, and to enhance its global convergence. For this purpose, multiple GA–ML estimators are constructed in a parallel manner based on resampling of a single data set, then those estimates are involved into a competition, and successful results are selected and combined to generate a more accurate estimate. Numerical studies demonstrate that the proposed scheme provides less DOA estimation root-mean-squared error (RMSE), higher source resolution probability and lower resolution threshold signal-to-noise ratio (SNR) than some popular approaches including GA–ML; and this technique is not sensitive to the array geometry.