Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Morphological and enzymatic responses of a recombinant aspergillus niger to oxidative stressors in chemostat cultures

Kreiner, M. and Harvey, L.M. and McNeil, B. (2003) Morphological and enzymatic responses of a recombinant aspergillus niger to oxidative stressors in chemostat cultures. Journal of Biotechnology, 100 (3). pp. 251-260. ISSN 0168-1656

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Continuous chemostat cultures of a recombinant strain of Aspergillus niger (B1-D), engineered to produce the marker protein hen egg white lysozyme, were investigated with regard to their susceptibility to oxidative stress. The culture response to oxidative stress, produced either by addition of exogenous hydrogen peroxide (H2O2) or by high dissolved oxygen tension (DOT), was characterised in terms of the activities of two key defensive enzymes: catalase (CAT) and superoxide dismutase (SOD). Since the morphology is so critical in submerged fungal bioprocesses, the key morphological indices were analysed using a semi-automated image analysis system. Both oxidant stressors, H2O2 and elevated DOT, increased both enzyme activities, however, the extent was different: exogenous H2O2 led mainly to increased CAT activity, whereas gassing with O2 enriched air, which resulted in a DOT of 165% of air saturation, increased both enzyme activities more than 2-fold compared with the control steady state culture. Addition of exogenous H2O2 resulted in shorter hyphae compared with control steady state cultures. These findings indicate that it is unsound to use exogenous H2O2 to simulate oxidative stress induced by elevated dissolved oxygen levels since the response to each might be quite different, both in terms of enzymatic (defensive) responses and in terms of culture morphology.

Item type: Article
ID code: 38423
Keywords: aspergillus niger, oxidative stress, oxygen enrichment, hydrogen peroxide, superoxide dismutase, catalase, Pharmacy and materia medica
Subjects: Medicine > Pharmacy and materia medica
Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 12 Mar 2012 15:56
    Last modified: 04 Oct 2012 12:29
    URI: http://strathprints.strath.ac.uk/id/eprint/38423

    Actions (login required)

    View Item