Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Analysis by computer simulation of a combined gas turbine and steam turbine (COGAS) system for marine propulsion

Jefferson, M. and Zhou, P. and Hindmarch, G. (2003) Analysis by computer simulation of a combined gas turbine and steam turbine (COGAS) system for marine propulsion. Proceedings- Institute of Marine Engineering Science and Technology Part a Journal of Marine Engineering and Technology, 2003 (2). pp. 43-53. ISSN 1476-1548

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

There is a large amount of heat energy available in the exhaust of a gas turbine, and this can be recovered in a heat recovery steam generator to produce additional power to the propulsion system or to electrical power. This concept is known as COGAS; that is, combined gas turbine and steam turbine. When used in a propulsion system, a COGAS plant has to satisfy the requirements of ship propulsion under all possible operating conditions. The performance of a COGAS system, particularly the gas turbine cycle, varies with the atmospheric conditions such as temperature, pressure and relative humidity. A dynamic analysis of COGAS propulsion plants is useful for predicting system performance and providing guidance for system design. The codes for the simulation performed in this study are developed with MATLAB/Simulink. This paper presents a dynamic simulation of a COGAS propulsion system with MATLAB/Simulink. Results of the simulation are discussed and presented in the paper.