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Abstract. - By including excess ion polarizability into Poisson-Boltzmann theory, we show that the decrease

in differential capacitance with voltage, observed for metal electrodes above a threshold potential, can be

understood in terms of thickening of the double layer due to ion-induced polarizability-holes in water. We

identify a new length which controls the role of excess ion polarizability in the double layer, and show that

when this is comparable to the size of the effective Debye layer, ion polarizability can significantly influence

the properties of the double layer.

Near a charged surface in contact with an electrolyte, at-

tracted counterions and depleted coions form a layer that elec-

trically screens the interfacial charge, rendering the so-called

double layer electrically neutral. The counterion layer is

loosely associated with the charged surface, under the influ-

ence of both the attractive and repulsive Coulomb force and

thermal motion. The double layer has been studied extensively

due to its importance within a wide number of areas e.g. colloid

science, electrochemistry, and geophysics. Much attention has

been devoted to the low and moderate surface potential regime,

where established Gouy-Chapman-Stern (GCS) models [1–3]

can quantitatively explain most experimental results. However,

the double layer is also a key ingredient in applications such

as supercapacitors [4] and microfluidic devices [5], which of-

ten operate at surface potentials much larger than the thermal

voltage (kBT/e = 25mV, where e is the fundamental unit of

charge). The behavior of double layers at such high voltages

is not well understood, and experimentally available quanti-

ties, such as the electroosmotic mobility and the differential ca-

pacitance, deviate from established models based on GCS the-

ory [1–3, 6]. Many experimental observations in the high sur-

face potential regime can be qualitatively explained by includ-

ing ionic excluded volume interactions into Poisson-Boltzmann

theory, either by a lattice approximation [6–8] or by the more

accurate BMCSL equation of state [6, 9, 10]. However, quan-

titative agreement between theory and experimental data is in

most cases only obtained with unphysically large ion sizes [6],

suggesting that other effects are equally or more important.

In this Letter, we study ions in water near planar electrodes

at a surface potential ψ0, including not only excluded volume,

but also the excess ion polarizbility, i.e. the change of the wa-

ter polarizability due to the presence of an ion [11]. Due to

excess ion polarizability, an additional dielectrophoretic force

is exerted on the ions [12], which becomes comparable to the

bare Coulomb force for large electric fields. The model without

excluded volume interactions was first published in its present

form in Ref. 11 and analyzed in more detail in Ref. 13. Simi-

lar models were used to describe excess polarizability effects in

bulk electrolytes [14] and in double layers with charged poly-

mers [15]. Studies of excess polarizability in the double layer

dates back to the papers by Gouy [16], Frumkin [17], and But-

ler [18], who examined the influence of neutral molecules on

the differential capacitance. The influence of excess ion po-

larizability on the differential capacitance was first studied by

Bikerman [7]. The model used by Bikerman includes how ex-

cess ion polarizability changes the chemical potential of the

ions, and due to lack of computational power, he restricted the

study to the asymptotic behavior for weak and strong electric

fields. It is also well known that excess polarizability also influ-

ence the dielectric constant [19], and a complete model of ex-

cess ion polarizability must capture both these effects, as done

in Refs. [11, 13]. The main result of this Letter is the finding

that excess ion polarizability can explain the experimentally ob-

served increase of the double layer at surface potentials larger

than a certain threshold ψα, for bulk packing fractions below

v0. We find an analytic expression for ψα, and show that when
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ψ0 > ψα and v < v0, the thickness of the double layer in-

creases as a function of voltage due to an interplay between di-

electrophoretic repulsion and Coulomb attraction. For v > v0,

the double layer thickness also increases with voltage, however,

excluded volume interactions are the main driving mechanism,

as found previously in Refs. 6–8. This increase of the double

layer is qualitatively different from the decrease predicted by

the standard GCS model and is in agreement with experimental

measurements of the specific differential capacitance C

C ≡
∂Σ

∂ψ0

(1)

of the double layer per unit area, where Σ is the surface charge

density of the electrode.

The first description of the double layer was due to

Helmholtz [20], who considered it as a normal two plate capac-

itor: the metal electrode is separated from the electrolyte solu-

tion (assumed to behave as a perfect conductor) by a medium

of dielectric constant ǫ and thickness d, due to the finite size of

the ions. For a planar electrode, the capacitance per unit area

according to the Helmholtz model is

CH =
ǫ

4πd
, (2)

independent of ψ0 and the bulk electrolyte concentration c.
In the early 1900’s, Gouy [1] and Chapman [2] consider-

ably improved this model by including the diffusive structure

of the loosely bound counterions. The Gouy-Chapman differ-

ential capacitance, assuming symmetric monovalent ions (with

charge q± = ±e), is [1, 2]

CGC =
ǫ

4π
κ cosh

(φ0
2

)

≡
ǫ

4πλ(κ, φ0)
, (3)

where φ0 = βeψ0 is the dimensionless electrode potential,

κ2 = 8πβe2c/ǫ is the Debye screening parameter, β−1 =
kBT , T is the temperature, and kB the Boltzmann constant.

In analogy with the Helmholtz capacitance Eq. (2) λ(κ, φ0)
can be viewed as the effective thickness of the double layer,

i.e. most of the neutralizing charge is located within a distance

λ(κ, φ0) from the electrode. The effective thickness of the dou-

ble layer within the GC model λ(κ, φ0) is a decreasing function

of both ψ0 and c, and approaches zero when |φ0| → ∞. How-

ever, such unphysical divergence of the differential capacitance

is not observed experimentally [21–23], and it is only when

λ(κ, φ0) ≫ d, corresponding to low surface potential and di-

lute electrolyte solutions, that this model accurately describes

the double layer. For monovalent ions in water, ion-ion corre-

lations (including image charges) play a minor role, justifiying

the mean field approximation underlying the Gouy-Chapman

model [24].

To describe the regime where λ(κ, φ0) ∼ d, Stern suggested

a combination of the Gouy-Chapman model and the Helmholtz

model, splitting the double layer into a normal two-plate ca-

pacitor close to the electrode (Eq. (2)), in series with the Gouy-

Chapman capacitance (Eq. (3)) [3]. The GCS model is now

the established way of describing the double layer, and can ex-

plain many of its aspects, especially at low to moderate voltage.

When the voltage is increased beyond a certain level (varies

with electrolyte and electrode), the GCS model fails, e.g. it

cannot explain the experimentally observed nonmonotonic de-

pendence of the differential capacitance with increasing voltage

[21, 25, 26]. Such nonmonotonic behavior is often interpreted

in terms of a voltage dependent Stern capacitance. From fits of

experimental measurements to such a model, it has been con-

cluded that the dielectric constant of the Stern layer is different

from bulk water, and varies with voltage [25, 27].

The influence of static excess ion polarizability on the elec-

tric double layer has been studied in various forms, dating back

to the classic paper by Bikerman [7]. In recent years, a modified

Poisson-Boltzmann approach has been developed, which con-

sistently takes into account excess ion polarizability [11, 13],

describing both its influence on the chemical potential of the

ions and the dielectric constant of the solution. These studies

suggest that excess ion polarizability can significantly influence

the double layer when |φ0| ≫ 1. It is experimentally known

that the dielectric constant of a bulk electrolyte varies linearly

with bulk salt concentration for c < 2M [19]. Within a mean

field approximation, this linear relation also holds for an inho-

mogeneous system. The net dielectric constant of the solution

then becomes position dependent, and at a distance z from a

planar electrode, [11, 13, 14, 19]

ǫ(z) = ǫw + 4πα+c+(z) + 4πα−c−(z), (4)

where ǫw is the dielectric constant of water, c±(z) is the lo-

cal concentration of cations (+) and anions (−), and α± is the

excess polarizability of the ions. In Eq. (4), we assume the di-

electric constant of water to be equal to its bulk value, valid

for electric fields below 0.25V nm−1 [27–30]. For most ions

in water α < 0 [19], meaning they reduce the dielectric con-

stant of the solution. The measured values of the excess ion

polarizability are tabulated in Table 1. Note that the actual po-

larizability of the ion is not the most important, but rather the

polarizability hole that the ion creates in water [13, 31]. The

negative sign of α can be further understood by invoking the

Clausius-Mossotti relation [30], which for a homogenous di-

electric constant ǫi inside the polarizability hole is given by

α = R3
i ǫw

ǫi − ǫw
ǫi + 2ǫw

, (5)

where Ri is the effective ion radius, including the water

molecules in the hydration shell. With ǫi < ǫw, due to the ori-

entationally restricted water molecules in the hydration shell,

we have α < 0.

Within a mean field approximation, the excess energy of a

polarizable particle in an external electric field is [7, 11, 13, 14,

19]

βEex =
1

2
l2|φ′(z)|2 (6)

where the prime denotes a derivative, and l = (−α/βe2)1/2

is a new length scale characterizing the coupling between bare

and induced charges (we assume equal α for both ion species

for notational convenience). The quadratic relation in Eq. (6)

was found in Ref. 30 to hold for |ψ′| < 0.25V nm−1; for

p-2



The electric double layer at high surface potentials: The influence of excess ion polarizability

+ 
+ 

- 

ψ0 

d

εw

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

- 

- 

- 

Fig. 1: Electrode at potential ψ0 in contact with an electrolyte solution.

The ions are restricted from within a distance d from the plate and are

surrounded by a layer of ordered water molecules (see Ref. 13 for a

similar illustration).

|ψ′| ≫ 0.25V nm−1 the energy becomes linear in the elec-

tric field due to the polarizability saturation of water [7]. In this

Letter, we do not include dispersion interactions between the

ions and the electrode; such interactions are very short ranged

and are approximately captured here by the thickness of the in-

ner Stern layer.

To estimate the double layer thickness ζ for |φ0| ≫ 1, we

compare the induced-dipole contribution Eq. (6) with the term

due to bare charges, l2|φ′(0)|2/2 = φ0. Assuming the poten-

tial varies linearly through the double layer, φ′(0) ≈ φ0/ζ, it

follows

ζ ∼ l
√

|φ0|, (7)

which is an increasing function of the surface potential, in con-

trast to λ(κ, φ0). Below, in Eq. (12), a more detailed expression

for ζ will be derived.

The geometry we study, similar to a typical experimental

setup, is shown in Fig. 1. An electrolyte solution with bulk ion

concentration 2c is in contact with a planar electrode at con-

stant potential ψ0 ≡ ψ(z = 0), and the solvent is modeled as a

continuum with dielectric constant ǫw. The ions are restricted

from a region of thickness d near the electrode, corresponding

to the inner Stern/Helmholtz layer.

By including the induced dipole density of the ions in the

Poisson equation, we find [32]

−
1

4π
{ǫ(z)ψ′(z)}

′
= e(c+(z)− c−(z)) (8)

where ǫ(z) is the effective dielectric constant given by Eq. (4).

To complete Eqs. (8) and (4), we relate the local electric po-

tential to the local ion density by the Boltzmann distribution

[7, 13, 14]. To include excluded volume interactions, we use

the lattice approach introduced by Bikerman in Ref. 7

c±(z) =
c exp

[

∓ φ(z)− l2

2
|φ′(z)|2

]

1 + v exp
[

− l2

2
|φ′(z)|2

]

cosh(φ(z))− v
, (9)

Table 1: Experimentally measured excess polarizability [13, 19].

cation 4πα (M−1) anion 4πα (M−1)

H+ −17 F− −5
Li+ −11 Cl− −3
Na+ −8 I− −7
K+ −8 OH− −13
Rb+ −7 SO−

4 −7

where v = 2ca3, and a is the lattice spacing, approximately

equal to the ion diameter. Ions that increase the local dielectric

constant of the solution are attracted to regions of high fields,

while ions that decrease the dielectric constant are repelled.

The extra repulsion/attraction is caused by the dielectrophoretic

force due to polarization effects in a nonuniform electric field

[12]. Assuming a uniform dielectric constant in the Stern layer,

the electric potential obeys

ψ(d) = ψ0 + dψ′(d). (10)

In Fig. 2a, we plot the ion density profile (solving Eqs. (4),

(8) and (9)) for φ0 = 15, 4πα = −8 M−1, a = 0.6 nm and

d = 0 at different bulk ion concentrations. We observe three

surprising phenomena: (i) a saturation of the density profile ap-

proaching −8παc(z)/ǫw = 1, (ii) an increase of the thickness

of the saturated layer with concentration c, completely opposite

to the established GCS model, and (iii) almost identical density

profiles for a = 0.0 nm and a = 0.6 nm. The ion concentra-

tion close to the plate saturates at c ≈ 5M, which for an ion

of hydrated diameter a = 0.6 nm corresponds to v ≈ 0.65, i.e.

below close packing. To facilitate a simple analysis to better

understand the physics involved, we assume zero coion density

in the vicinity of the electrode. Without any loss of generality,

we assume negatively charged counterions, i.e. φ0 > 0. For the

planar geometry depicted in Fig. 1, with φ0 ≫ 1 there is an

analytical solution to Eqs. (8), (4), and (9) for α < 0 and z < ζ
[13],

φ0 − φ(z) =
z

2l2
[2ζ − z] (11)

where

ζ = l

√

2
[

φ0 − φα

]

, (12)

which is a more accurate version of Eq. (7). The solution is

only valid for φ0 > φα = ln
(

[1 − v]/[(κl)2 − v/2]
)

, (κl)2 >
v/2, and v < 1. For (κl)2 < v/2 saturation of the density

profile due to excluded volume will dominate, a regime which

has been analyzed elsewhere [6]. For the polarizability of K+,

excluded volume will dominte the large potential regime when

a > 0.7 nm. As predicted earlier, ζ is an increasing function of

the surface potential, and, as suggested by Fig. 2a, ζ increases

with concentration c.
The resulting counterion density is c−(z) = c/(κl)2 =

−ǫw/8πα, the effective dielectric constant is ǫ = ǫw/2 (see

Eq. (4)), and the differential capacitance per unit area is

C =
ǫ

4πζ
=

ǫw
8πζ

, (13)
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Fig. 2: (a) Counterion density profiles and (b) electric potential near an electrode at βeψ0 = 15 for 4πα = −8M−1 (corresponding to K+),

a = 0.6 nm and different bulk ion concentrations. The thin lines in (a) are with a = 0.0 nm and in (b) the analytical approximation Eq. (11).

confirming that ζ is the effective thickness of the double layer.

In Fig. 2b, we plot the electric potential for different bulk

electrolyte concentrations, and compare the result with the an-

alytical solution. The analytical solution is accurate for z < ζ
and becomes unphysical for z > ζ, where the potential in-

creases with z.

In Fig. 3, we plot the electric field at the electrode surface

(E(0) = −ψ′(0)) as a function of the surface potential ψ0,

for different values of the bulk electrolyte concentration c. The

excess ion polarizability are for both ions set equal to K+ in Ta-

ble 1. Here we see that the maximum electric field in the regime

of interest is below the limit where the polarization saturation of

water must be accounted for (E(0) < 0.25V nm−1). We also

see from Fig. 3 that the field with and without excluded volume

interactions are nearly identical, signifying the relative impor-

tance of ionic excess polarization compared to ionic packing.

In Fig. 4a, we compare the differential capacitance calcu-

lated numerically to the low voltage result given by Eq. (3) and

the high voltage result given by Eq. (13). For intermediate volt-

ages both approximations fail, and a full numerical solution

must be used to obtain accurate results. To validate our the-

oretical predictions we compare the results with experimental

data for the differential capacitance of KPF6 in contact with a

silver electrode [21]. Neglecting the Stern layer (i.e. d = 0, see

Fig. 1), the agreement between theory and measurments is only

qualitative (thick dashed-dotted line in Fig. 4a), and the differ-

ential capacitance is overestimated. Good agreement between

our theory and the experimental data is found for d = 4.8 Å

corresponding to CH = 146µF cm−2 (solid line of Fig. 4a), in

agreement with values obtained in previous studies [6, 33]. In

Fig. 4b, we compare our results with the same measurements

for several bulk ion concentrations, with d = 4.8 Å and excess

ion polarizabilities for both ions corresponding to K+ in Ta-

ble 1. The agreement is very good, especially for negative volt-

age, when K+ is the counterion. To obtain similar agreement

for positive voltage, it is necessary to use a different ion polar-

izability for PF−

6 , as well as two different distances of closest

approach, as the ions have different effective sizes in water.
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 ψ0[V]

0

0.1

0.2

0.3

0.4

E
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/n
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]
c =     1 mM
c =   10 mM
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Fig. 3: The maximum electric field in the double layer as a function

of surface potential for 4πα = −8 M−1 and d=0.48 nm. Thick lines

with a = 0.6 nm and thin lines with a = 0.0 nm.

In Fig. 5, we plot the counterion density a distance d from the

electrode surface as a function of the surface potential ψ0, for

different values of the bulk electrolyte concentration c. The ex-

cess ion polarizability are for both ions set equal to K+ in table

1. In the regime of interest the maximum ion density is below

4 M, which is in the regime where Eq. (4) is valid [19]. The

thin lines are the predictions with a = 0.6 nm corresponding to

an ion radius of R = 0.3 nm, which is about the hydrated ion

radius of K+. Excluded volume interactions reduce the surface

density, however only in a small quantitative manner. In Fig. 6

we plot the capacitance with a lattice spacing a = 0.6 nm. As

we can see from Fig. 6 the excluded volume interactions do not

change the results much compared to the v = 0 (see Fig. 4).

We find similar agreement between our theory and measure-

ments of the differential capacitance at other electrodes [22,23],

however with a different inner Stern layer thickness d and ca-

pacitance CH , suggesting that these quantities are electrode
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Fig. 4: Experimentally measured [21] differential capacitance (symbols) of an Ag-electrode in an aqueous KPF6 solution, in (a) for a salt

concentration c = 0.01M and in (b) for a series of c’s. The curves are theoretical predictions with 4πα = −8M−1 (for K+) , a = 0.0 nm,

and a single fit parameter d = 0.48 nm. In (a) the vertical lines represent the threshold potential ±ψα, the dot-dashed curve is the prediction

for d = 0, and the dotted and dashed curves are the asymptotic low- and high-potential curves of Eqs. (3) and (13), respectively.
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Fig. 5: The counterion density at the distance of closest approach as a

function of surface potential for 4πα = −8 M−1 and d=0.48 nm. The

thick lines are the results without excluded volume and the thin lines

are with excluded volume, with a = 0.6 nm.

specific, and reflect interactions between water and the elec-

trode material.

In this Letter, we have shown that excess ion polarizabil-

ity strongly affects the double layer at large surface potentials.

There is a decrease in capacitance as a function of voltage and

bulk ion concentration above a threshold voltageψα. This trend

is opposite to the well-known behavior at thermal voltages.

When we account for the inner Stern layer, quantitative agree-

ment between experimental measurements and our theory is

found. For surface potentials above ψα, the double layer thick-

ens due to dielectrophoretic repulsion of ions from the charged

surface. We have shown that saturation of the ion density pro-

file near the electrode due to excess ion polarizability will for
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Fig. 6: Experimentally measured [21] differential capacitance (sym-

bols) of an Ag-electrode in an aqueous KPF6 solution. The curves are

theoretical predictions with 4πα = −8M−1, a = 0.6 nm (for K+),

and a single fit parameter d = 0.48 nm.

many systems occur before saturation due to excluded volume,

and will therefore be more important. Our new contribution

to the theory of the double layer will facilitate a better under-

standing of supercapacitors at high surface potentials, used for

example in desalination and blue energy devices [34–36], and

for microfludic devices based on induced charge electroosmotic

flow [6].

The theory presented in this Letter is valid when the di-

electric constant of water is nearly unaffected by the exter-

nal electric field, which is found in Ref. 30 to hold for E <
0.25V nm−1. Above this limit, the influence of the electric

field on the water structure must be accounted for [30, 37]. In-

cluding the polarizability saturation of water [27] leads to a de-

crease of the differential capacitance with voltage, in the same
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manner as predicted here, and could thus provide an alterna-

tive for the presently proposed excess-polarization mechanism.

However, this alternative relies on two or more fit parameters to

explain the data of Ref. 21. This is in contrast to the prediction

presented here, where no fit parameter is needed other than the

thickness of the Stern layer d.

Correlation effects in electrolytes become important when

lB/a ≫ 1, where the interaction between ions becomes much

larger than the thermal energy. For the present system, lB/a ∼
1, and correlation effects will only give a small quantitative

correction, even at high ion density. For systems with ions of

higher valency and/or solvents with lower dielectric constant,

correlation effects must be accounted for [38, 39]. For systems

without a solvent (e.g., ionic liquids), the ion polarizability is

positive and will have the opposite effect on the differential ca-

pacitance [40] than that found in this work.

In many electrolyte-electrode systems specific adsorption of

anions plays an important role, and such behavior must be in-

cluded to obtain quantitative agreement between theory and

measurements. In order to disentangle fundamental processes

we have therefore considered here an electrode-electrolyte sys-

tem where little specific anion adsorption is found. In this work,

the maximum electric field is < 0.25V nm−1, where the di-

electric constant of water is still nearly equal to its bulk value

[29,30]. We therefore believe that including polarizability satu-

ration of water into the present theory, will only lead to a small

quantitative change that can be captured by adjusting d. How-

ever, for even larger voltages and/or other electrode materials,

the influence of the electric field on the dielectric constant of

water must be included, for example along the lines of the work

by Grahame [25]. Specific interactions between the ions and

the electrode material may be accounted for by incorporating

additional contributions to the Boltzmann weights in the nu-

merator and denominator of Eq. (9). The present work is a

natural starting point for extensions along all these lines.
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