Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles

Polwart, E and Keir, R L and Davidson, Christine and Smith, W E and Sadler, D A (2000) Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles. Applied Spectroscopy, 54 (4). pp. 522-527. ISSN 0003-7028

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A novel sensor based upon surface-enhanced Raman scattering (SERS) has been constructed by immobilizing colloidal silver particles onto the distal end of an optical fiber. This same single fiber was then used to both transport the exciting laser radiation and collect the Raman scattering from analytes sorbed onto the colloidal particles. The colloidal particles were immobilized by functionalization of the end of the optical fiber with (3-am inopropyl)trimethoxysilane prior to immersion of the fiber in silver colloid. Spectra were obtained from both 4-(5'-azobenzotriazol)3,5-dimethoxyphenylamine and crystal violet. The within-batch variation of a set of five fibers has been measured as approximately 10%. Raman imaging experiments demonstrated that the effects due to spatial variations in the intensity of the SERS recorded over the distal end of the fiber are removed by the use of a multimode fiber. Index Headings: Fiber optic; Raman; Surface-enhanced Raman scattering; SERS; Surface-enhanced resonance Raman scattering; SERRS; Sensors.