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Performance assessment of MIMO systems under partial 
information 

H. Xia' P. Majecki 

Absrrucr-Minimum variance (MV) can characterize the 
most fundamental performance limitation of a system, owing 
to the existence of time-delaydinfinite zeros. It has been widely 
used as a benchmark to assess the regulatory performance of 
control loops. For a SISO system, this benchmark can be 
estimated given the information of the system time delay. In 
order to compute the MIMO MV benchmark, the interactor 
matrix associated with the plant may be needed. However, the 
computation of the interactor matrix requires the knowledge 
of Markov parameter matrices of the plant, which is rather 
demanding for assessment purposes only. In this paper, we 
propose an upper bound of the MIMO M V  benchmark which 
can be computed with the knowledge of the interactor matrix 
order. If the time delays between the inputs and outputs are 
known, a lower hound of the MIMO MV benchmark can also 
be determined. 

I. INTRODUCTION 
The control loop performance benchmarking techniques 

have built on ideas used successfully in business bench- 
marking. The aim is to diagnose control loop performance 
and provide tools to determine: 

1) The best achievable performance which will be 
treated as the performance benchmark. 

2) The controller performance index (CPI) which i6 the 
ratio of the performance benchmark to the actual 
performance. 

Based on CPI? it can be seen whether there is any oppor- 
tunity to improve the performance of the loop. The ways 
in which the loop performance may be improved will be 
in the realm of controller design. Controller benchmarking 
has been an active research area for the recent ten years 
[l], [4]. This interest started with the work of Hams 
[Z]. In his paper, Harris proposed the use of closed-loop 
data to evaluate and diagnose controller performance using 
the output variance under the minimum variance (MV) 
controller as a benchmark. 

The SISO MV benchmark is useful as the absolute 
lower bound on the achievable control performance and 
is attractive for its simplicity and minimum required in- 
formation - only the output data collected from the plant 
and the estimate of the process deadtime are needed. For 
a MIMO system, the interactor matrix was introduced as a 
multivariable generalisation of the SISO time delay term. 
Assuming the full knowledge of the plant, a MIMO MV 
benchmarking method is presented in [3]. 
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With the information of the magnitude of the time-delay, 
it is relatively easy to estimate the MV benchmark for a 
SISO system, In the case of MIMO systems, in order to 
estimate the MV benchmark, we need to construct a new 
signal by filtering the system ouaut, with the interactor 
matrix of the system. Although it is possible to estimate the 
interactor matrices from the closed loop data [3], [61; this 
makes the computation of the MV benchmark for MIMO 
systems more difficult. Assuming the order of the interactor 
matrix is known, a simple interactor of the same order is 
proposed as a substitute for the original interactor matrix 
and prove that the Performance index thus computed is an 
upper bound. Although the result is suboptimal, the.com. 
putation procedure can be greatly simplified. Furthermore, 
a lower bound of the MV benchmark can be computed 
when the delay information between inputs and outputs of 
the plant is available. These bounds can be used to assess 
the CPI of the current controller which indicates its current 
performance level . 

The rest of the paper is organized as follows: The deriva- 
tion of the MV benchmark for SISO and MIMO systems 
is briefly introduced in section 2. Then the estimation of 
the upperflower bound of the MV benchmark is presented 
in sections 3 and 4. Using the FCOR technique introduced 
in [3], we illustrate the results on a simulated example in 
Kction 5. The paper is concluded in section 6. Due to space 
limitation, most of the proofs are omitted from the paper. A 
more detailed report can be obtained from the author upon 
request. 

11. MV CONTROLLER AND BENCHMARKING 

In this paper, our major focus is on the system perfor- 
mance in the steady state, and without loss of generality 
it is assumed in the following that the reference signal is 
set to zero. The only input to the system ct is a zero-mean 
white noise of unity variance. The plant is modeled as: 

where k is the time delay, T is the delay-free plant transfer 
function, and N is the disturbance transfer function. In the 
following subsections, the SISO MV controller for the plant 
(I)  is first derived, then the result is generalised to MIMO 
systems. These derivations are standard and can be found 
in many references. 

A .  The SISO MY controller 
Using the Diophantine identity: 

N = F + q - k R = f o + . . . +  fk - lq -k+f '+q-kR (2) 
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where f; (for i = 0,. . . , k - 1) are constant coefficients, 
and R is the remaining rational, proper transfer function, 
Equation (1) can be rewritten as: 

(3) 

The first term in this equation cannot be affected by the 
control action, i.e. V U T ( Y ~ )  2 VCZT(F<~) .  The minimum 
variance control is achieved when the second term of 
equation (2) is set to zero, i.e. 

~t = FCt + q-'(Tut + R t )  

 TU^ + RCt = 0 

(4) ut = --(t 

C = F-'Yc ( 5 )  

This yields 
R 
T 

Substituting equation (4) into (3) yields 

Substituting ( 5 )  into (4) gives the minimum variance control 

(6) 
law R 

Ut = -- 
FT ut 

So the minimum variance feedback controller is 
R Chf" = -- FT (7) 

This particular version of minimum variance control re- 
quires the plant to be minimum phase if the control law is 
to be stabilizing. A block diagram of the closed loop system 
is shown in Fig.1. It is obvious that F is independent of 

. . :  7, 
v ,  

Fig. I .  Block diagram of a MV feedback control loop 

the controller C, in other words the term FC which is the 
process output under minimum variance control, isfeedback 
controller-invoriunf. The term V U T ( F & )  is defined as the 
MV benchmark. 

If the transfer function from <t to gt is modeled by an 
infinite moving-average (MA) time series model, then the 
computation of the MV benchmark VCZT(FC) is equivalent 
to the estimation of the first k terms of this model. 

B. The M M 0  MV conidler 
Time delay results in the most hndamental limitation on 

the achievable performance of any controller. Performance 
assessment of SISO processes as discussed before reflects 
this fundamental performance limitation in a stochastic 
framework. Wolovich and Falb [9] showed that the analog 
of the time-delay term in a SlSO system is the interactor 
matrix in a MIMO system. 

Theorem 2.1: For every n x m strictly proper, rational 
polynomial transfer-function matrix T ,  there is a unique, 
non-singular, n x n lower left triangular polynomial matrix 
D, such that ID1 = q' and 

lim DT= 1;m T =  K (8) 

where K is a full rank constant matrix. The integer T is 
defined as the number of infinite zeros of T, and ? is the 
delay-free transfer-function matrix of T which contains only 
finite zeros. The matrix D is defined as the interactor matrix 
and can be written as 

q- l+n q- -0 

D = Doqd + Dlqd-' + . . . + Dd-Iq (9) 
where d denotes the order of the interactor matrix and is 
unique for a given transfer-function matrix, and D, (for 
i=O,. . . ,d-l) are the coeficient matrices. 0 
The interactor matrix D can be assumed to he one of the 
three forms described in the sequel. If D is of the form: 
D = y d l ,  then the transfer function matrix T is regarded 
as having a simpre interactor matrix. If D is a diagonal 
matrix, i.e., D = diag(ydl ,  y d 2 , .  . . , qd-) ,  then T is consid- 
ered having a diugonal interactor matrix. Otherwise, T is 
considered to have a general interacfor matrix. A special 
type of general interactor matrix which is called the unifary 
interacfor mafrix was introduced in [7]. 

Definition 2.1: Instead of taking the lower triangular 
form, if an interactor matrix defined in Theorem 2.1 satisfies 

DT(q--')D(q) = I  

then this interactor matrix is referred to as a unitary inter- 
actor matrix. 
For any given full rank rational, proper transfer-function 
matrix T ,  there exists a non-unique unitary interactor 
matrix. However, it was shown-' in.[7] that any two unitary 
interactor matrices, D(q)  and D(q),  satisfy D(q)  = rD(q) ,  
rTr = I . Here r is an n x n unitary real matrix. 

Using the interactor matrix, Huang and Shah [3] proposed 
a simple method of deriving the MIMO MV controller. 

Consider a multivariable system 

Yt = TU1 i N<t (10) 

where T is the system transfer function matrix and N is 
the disturbance transfer function matrix. Then we have 

Theorem 2.2: (Theorem 4.3.1 of [3]) For a multivariable 
process 

where ct is a vector of random white noise sources with 
zero mean, let D be the interactor matrix of T with the 
order d. The linear quadratic objective function defined by 

Yt = TUt + NI$  (11) 

JlMv = E(@:@,) 
where at = q-dDK is minimized by an explicit optimal 
control law given by 

Ut = -??-'R,F-'(q-dD)K (12) 
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where P = DT, F and R satisfy the Diophantine identity: 

q-dDN = Fo f . . . + Fd-lq-d+'  +q-dR (13) 
P 

F 

and R is a rational proper transfer function matrix. Further- 
more, the MIMO MV benchmark is defined as 

J M V  = tr[Var(FCt)l (14) 
Remarks: 

From above, it is clear that the interactor matrix is 
vital in the computation of MIMO MV benchmark if a 
data-driven method is preferred. According to (13) and 
(14), the benchmark can be the same for two different 
plants as long as they have the same interactor and 
disturbance transfer function matrix . 
If an MV controller is applied, the control signal is 
ut = -$& for a SISO system and Ut = -P-'RCk for 
a MIMO system. The control signal will be unbounded 
if T or T contain non-minimum phase zeros. 
The inverse of T is used to derive the MIMO MV 
controller and this implies n 5 m, i.e. the number of 
plant inputs is greater or equal to the number of plant 
outputs. In another word, equation (12) in general only 
holds when n 5 m. 

In the following, without loss of generality we assume 
that the plants can be represented as square strictly proper 
rational transfer-function matrices. 

111. THE UPPER BOUND OF THE'MIMO MV 
BENCHMARK 

As discussed before, the interactor matrix is needed to 
estimate the MIMO MV. benchmark: However, the compu- 
tation of the interactor matrix is rather involved. Recursive 
algorithms for calculating a lower triangular and nilpotent 
interactor were proposed in [9] and [SI, respectively. The 
need for a complete open loop transfer function limits the 
usefulness of these methods. It was later shown in [3] that 
the interactor matrix could be determined from the leading 
Markov parameter matrices of the plant model. Assuming 
the order of the interactor matrix is d, then the first d 
Markov parameter matrices have to be found to calculate the 
exact interactor matrix. These matrices can only be obtained 
through open or closed-loop identification techniques. 
In this section, it will be shown that an upper bound of the 

benchmark can be estimated based only on the information 
on the order of the interactor matrix. 

Theorem 3.1: Let J = tr[Var(FC)] where F satisfies 
the following identity: 

qTdDN = Fa + . . . f Fd-lq-df'  +q-dR (15) 
* 
F 

where D is any unitary interactor matrix of order d and 
N = ELo N;q-a is a given transfer function. Then J is 

0 maximised when D = q d I .  

Proof: Without loss of generality, it is assumed that Ct is a 
vector of zero mean white noise and Var(ct)  = I, then we 
have 

d-1 

J = tr[Var(FCt)] = t r [ x  FTF;] (16) 
i=O 

Since D is a unitary interactor matrix of order d, it can be 
written as 

Substituting D and N into the left hand side of (15), we 
have 

i 

F, = c D , N , - j ,  ,i = O,.. . ,d  - 1 (18) 
j=O 

Inserting (18) into (16), we have J = x:z: 
where G,j is the element of the following matnx 

tr[Gij] 

G =  

... 
(1% 

Based on the faci that D is a unitary interactor matrix, i.e. 
DT(q-')D(q) =I, we have 

(20) 
E{=, DTd-;-lD; = 0 with j = 0,. . . , d - 2 

D ~ , D ,  = r 
Substituting (20) into G, G can be rewritten as: 

( N : N ~  0 ... 0 )  

\ 0 NTDTd-2DoNd-l  . . .  NT-_,DToDoNd-l)  
(21) 

By careful inspection, it can found that the term Dd- l  does 
not appear in (21). Using the Lagrange multiplier technique 
[ 5 ] ,  it can be shown that J is maximised when Dd-1  is set 
to zero. Inserting Dd-1 = 0 back to (20), we have 

d-2 T D .  - 1  D i I - 

Substituting (22) back to (21), we have 

@No 0 . . .  0 

0 NFNi ... 0 

n 0 ... NdT_ DToDo Nd- 

G =  (23) 
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while Dd-2 does not appear in (23). As a result J is 
maximised when Dd-2 is zero. Following the same line 
of thought, it can be found that J is maximised with 

D , T D ~  = I Di = 0,  i = 1 , .  . . , d - 1 

If we set DO = I, we can see that J is maximised when 

Based on the above theorem, the following corollary can 
be obtained 

Comllav 3.1: Given the order of the interactor matrix is 
d ,  the least conservative upper bound of JMV can be found 
by estimating Jupper = t r (Var(FC))  where F satisfies the 
following identity: 

D = qdI.  0 

N = No + . . . + Nd-iq-df' +q-dR 
F 

IV. THE LOWER BOUND OF THE MIMO MV 
BENCHMARK 

An upper bound of the MIMO MV benchmark has been 
discussed in the previous section. In this section, a lower 
bound will be introduced. 

Given a transfer function matrix T, if the time delays 
between inputs and outputs are known, then a diagonal 
delay matrix associated with T can be defined as: 

Dd(T) =diag{qd', . . . , q d n }  (24) 

where each element d; of Dd(T) is the minimum delay in 
the ith row of T.  Another parametric matrix U(T) can be 
defined as 

u,,j # 0 if time delay of T;J equals d; 
otherwise 

( 0  (25) 

V ( T ) , j  = 

and u,>j represents the i f h  element of l im,-~,~DdT 
According to the definition of the interactor matrix (see 

(8)), we have the following lemma: 
Lemma 4.1: For a transfer function matrix T with 

only the inputloutput time-delay information given, if 
det(U(T)) # 0 for all ui,j # 0 then Dd(T) is the diagonal 
interactor matrix of T .  0 
Note that the above lemma is only a sufficient condition 
for Dd(T) to be the diagonal interactor matrix of T .  If 
there exists a set of such that det(U(T)) = 0, then 
the method introduced in [3] has to be used to find the 
interactor matrix of T. 

Lemma 4.2; Given a transfer function matrix T, a diag- 
onal polynomial matrix is defined as: 

6 = q-'Dd(T) 

where Dd(T) is the diagonal delay matrix of T. Then the 
unitary interactor matrix D of T can be represented as: 

D = P D  

where P is a unitary interactor matrix of 6 T .  0 

Remarks: A useful fact worth being pointed out is that 
6 is only determined by the delay information of T, while 
D can only be found with the full information of T.  

Lemma 4.3: Let J = t r [ c t z i  P F ; ]  where F satisfies 
the foliowing identity: 

q-dDN = Fo + . . . + Fd-iq-d+' +q-dR . a 
F 

where D is a unitary interactor matrix of order d.  
For any given integer d' 2 d ,  we have J = 

tr[c:'z: FTF;] = tr[C:':-,' CFFJ  where F' satisfies the 
following identity: 

(26) q-d'DN = FA + . , . + FA,-lq-d'+' +q-d'R' . 
F' 

Lemma 4.4: Given a transfer function matrix T, let 
Dd(T) be the diagonal delay matrix of T. A set of unitary 
interactor matrices is defined as 

' D = { D  : D = P D }  

where P is any unitary interactor matrix and b = 
q-'Dd(T). 

For any D E 'D, a cost function is defined as J ( D )  = 
tr[Cfzi FTF;] with F satisfies the following identity: 

q-dDN = Fo + . . . + Fd-lq-d+' +q-dR 
P 

F 

The order of D is d and N = Cp"o Niq-' is a given 
transfer-function matrix. Then 

arg min J ( D )  = Dd(T) 
Based on the above lemmas, the following theorem is 
obtained concerning the lower bound of MIMO MV bench- 
mark 

Theorem 4.1: Given a transfer function matrix T, let 
Dd(T) be its diagonal delay matrix with order d; the 
least conservative lower bound of JMV can be found 
by estimating JI,,,, = Var(FCt) where F satisfies the 
following identity: 

DE'D 

q-dDd(T)N = Fo + . . . + Fd-lq-df' +q-dR 
* 
F 

The above theorem can be interpreted as follows: the 
diagonal delay matrix can be considered as a simple gener- 
alization of the time delay of the SISO system. Let N; be 
the stochastic noise acting on the i th  system output: 

Ni = f O &  f f i 6 - 1  + ,  . . + f d . - lE t -d ; - l  +. . . 

where Ft is white noise and d, is the minimum time delay 
of the ith row of T.  

It is obvious that.e is the portion of noise which is 
independent of feedback control. Furthermore there may be 
other portion of N; which cannot be compensated due to 
the other infinite zeros of T .  This inevitably increases the 
achievable minimum variance. 
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V. EXAMPLES 
In the following, the application of the results obtained 

in the previous sections is demonstrated for performance 
assessment on a two by two MIMO controller. The approach 
consists of estimating the upper and lower bounds of the 
controller performance rather than the index itself. The 
advantage, however, is that it is not necessary to know 
the interactor matrix - the knowledge of the order of 
the interactor matrix and of the individual time delays is 
sufficient. 

Example This example was originally used by Huang 
and Shah [3] to demonstrate the application of the FCOR al- 
gorithm to performance assessment of multivariable systems 
with the general interactor matrix. Our objective here will 
be to illustrate how Theorems (3.1) and (4.1) can be used 
to estimate the upper and lower bounds of the controller 
performance index from plant data, the interactor order d 
and the individual time delays. For that purpose, we will 
apply the benchmarking algorithm twice: first assuming a 
simple interactor of order d, and then using the knowledge 
of the individual time delays to replace the actual interactor 
with its diagonal approximation. For comparison, we will 
also use full knowledge of the plant model to calculate the 
true general interactor matrix and hence the actual controller 
performance index. 
The process has two inputs and two outputs and is described 
by the equation (IO), with the plant and disturbance transfer 
matrices given as: 

-o'G 1 1 N =  [ 1-0.59-1 1-0.59- 

0.5 . 1.0 
1-0.59-' 1-0.59- 

The white noise input at is a two-dimensional white noise 
sequence of the covariance matrix Cc = I. Setting Klz = 1 
in the plant transfer matrix, the actual unitary interactor 
matrix for this example is of order d = 2 and can be 
determined as 

I -0.9578q -0.2873q 

-0.2873q2 0.9578q2 
D =  [ 

In this case, the order of the interactor matrix equals the 
largest time delay of the system, however it must be stressed 
that generally this does not have to be the case. The MV 
criterion to minimize is the sum of the variances of the 
two outputs: JMV = The minimum achievable 
value of JMV is determined by the polynomial matrix F 
in equation (13) and this can be obtained as: 

F =  I -1.1014q-' 0.2874q-' 

-0.1916 - 0.0958q-' -1.1302 - 0.56519-' 

The theoretically achievable minimum variance then follows 
from equation (14) as JMV = 2.9990. 

On the other hand, if instead of using the general interac- 
tor matrix D we use its simple and diagonal approximations 
Dun,,, = q21 and 

the corresponding polynomial matrices FUpper and Ft,,,,,, 
will assume the form 

.. 1 0.5 + 0.25q-I 1 + 0.5q-' ] 

9 o w e v  = [ b5 
and the upper and lower bounds of the minimum variance 
can then be calculated as JzF = 3.2896 and J & y  = 
2.6637. 

In reality, the plant and disturbance models might not 
be available and the above values have to be estimated 
from plant data. In order to estimate the minimum variance 
itself, the plant interactor matrix must be known. There are 
algorithms for its calculation or estimation from the first 
few Markov parameters of the plant [3], however they tend 
not to be very reliable in practice. Here we go around this 
problem by estimating the upper and lower bound of the 
minimum variance which only requires the knowledge of 
the order of the interactor matrix and of the individual time 
delays. 

The FCOR (Filtering and Correlation) algorithm used 
in the numerical calculations is described in Huang and 
Shah [3]. The algorithm involves modeling the outputs as a 
multivariable time series in order to estimate the white noise 
driving sequences. This "whitening" step is not unique and 
may result in different polynomial matrices F - in particular, 
the Cholesky algorithm can be used to obtain orthogonal 
driving sequences (i.e. of identity covariance matrix) that 
match the theoretical model. However, it is worth noting 
that the minimum achievable value of the cost function, i.e. 
the value that we eventually want to estimate, is invariant 
of the particular form of the polynomial matrix F. The 
estimates obtained (calculated using a data set of 5000 
samples), together with the theoretical values, are given 
in Table I. An important point to note is that in order to 

3.2896 

Estimated 2.5898 3.2426 

TABLE I 
MINIMUM VARIANCE ESTIMATES 
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estimate the coefficients of the polynomial matrix F,,,,, 
it was necessary to introduce for the time of the experiment 
an additional delay term to the controller transfer matrix. 
The reason for this can be explained briefly as follows. 
By assuming a simple interactor matrix of order d, we 
effectively attempt to estimate the first d coefficient matrices I 

of the disturbance model (2). Now with the actual plant 
(having a general interactor matrix) in the feedback loop, 
the closed-loop expression for the output is 

y* = F(* + q-dR(* - D-’TCoyt 

and in order to separate F from the other terms on the 
right hand side of this equation (required for the FCOR 
algorithm), d - 1 additional delays need be introduced to 
the controller CO. On the other hand, there is no such diffi- 
culty when estimating the lower bound using the diagonal 
interactor. 

To better see the effect which these approximations have 
on the calculated performance index, compare the three 
corresponding values for different values of parameter K I ~  
in the .plant transfer matrix (this parameter determines 
the level of interaction between input 2 and output I).  
The following multi-loop controller was used in all the 
simulations: 

The CPI is defined as where % is the system 
output yt filtered by q-dD. The results for different values 
of parameter KIZ are plotted in Figure 2. Considering 

112 

Fig. 2. 
interactor mauix 

Performance assessment of a MIMO system with the general 

the definition of the CPI and Theorems (3.1) and (4.l), 
it is clear that the “true” performance index will always 
lie between the upper and lower bounds calculated 
based on these theorems. The price that must he paid 
for thus simplifying the problem is the necessify of 
introducing additional delays to the contmller for the time 

of the benchmarking experiment (this concerns only the 
estimation of the upper bound). Moreover, the order of the 
interactor matrix needed for calculating the upper bound 
of the benchmark cost is not directly related to the actual 
delays present in the system and has to be determined 
separately. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we have discussed controller performance 
assessment of multivariable systems using the minimum 
variance controller as a benchmark. In order to avoid the 
exact estimation of the interactor matrix, we proposed a 
method to estimate the upper and lower bound of the 
minimum achievable variance instead of the minimum vari- 
ance itself. We proved that an upper bound of the MV 
benchmark can be estimated using only the known order 
of the interactor matrix, whereas the estimation of the 
lower bound requires only the knowledge of the individual 
time delays of the system. Although the knowledge of 
the interactor order is still a prerequisite, this considerably 
reduces the necessary information needed to assess the 
system performance. 

The MV benchmarking procedures assess the perfor- 
mance of the existing controller against that of the optimal 
full-order controller. Such an unconstrained optimization 
problem results in high-order controllers (this order being 
at least as high as the order of the plant) and a question then 
arises how to adequately interpret the value of the calculated 
performance index: is it so low because the controller 
is poorly tuned or simply because it is not possible to 
get a better result with the existing controller structure? 
Future research will be focused on the computation of 
the meaningful benchmark under the controller structure 
constraints. 
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