Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

The design of embedded transducers for structural health monitoring applications

Hayward, G. and Hailu, B. and Farlow, R. and Gachagan, A. and McNab, A. (2001) The design of embedded transducers for structural health monitoring applications. [Proceedings Paper]

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper describes a theoretical and experimental investigation concerning embedded piezoelectric transducers employed principally for condition monitoring of engineering composites. Both interdigital transducers (IDTs) and plate transducers are investigated with the aim of assessing their efficiency as uni-modal Lamb wave transmitters. The IDT configuration comprises a piezocomposite layer sandwiched between two flexible printed circuit boards, where the interdigital electrode spacing corresponds to the wavelength of the desired Lamb wave mode. The alternative configuration comprises a thin piezoceramic plate for which the lateral dimensions are chosen to efficiently couple energy into the desired mode. For both types of transducer, finite element models have been successfully employed to establish the design requirements for generating the zero order symmetrical mode (So) without simultaneously generating the zero order anti-symmetrical mode (Ao), which exhibits strong velocity dispersion. In this investigation the Ao mode is regarded as coherent noise. Generation of a pure So mode is shown to require positioning of the transducer at a depth which is exactly half way between the top and bottom faces of the plate-like structure within which it is embedded. For structural monitoring, the plate-type transducer is shown to be more suitable than the IDT. A scanning laser vibrometer was used to verify many of the theoretical findings.

Item type: Proceedings Paper
ID code: 38316
Keywords: embedded piezoelectric transducers , condition monitoring , engineering composites, interdigital transducers, plate transducers, piezoceramic plate, Electrical engineering. Electronics Nuclear engineering
Subjects: Technology > Electrical engineering. Electronics Nuclear engineering
Department: Faculty of Engineering > Electronic and Electrical Engineering
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 08 Mar 2012 12:23
    Last modified: 17 Jul 2013 11:42
    URI: http://strathprints.strath.ac.uk/id/eprint/38316

    Actions (login required)

    View Item