Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

An appraisal of source head methods for calculating the reliability of water distribution networks

Tanyimboh, T. and Tabesh, M. and Burrows, R. (2001) An appraisal of source head methods for calculating the reliability of water distribution networks. Journal of Water Resources Planning and Management, 127 (4). pp. 206-213. ISSN 0733-9496

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents a new way of interpreting the results of the traditional demand-driven network analysis as an approximation to pressure-driven simulation so as to calculate the reliability of single-source networks. The approach is useful because most network modeling software packages use the demand-driven analysis approach and are incapable of simulating pressure-deficient conditions properly. The formulation draws from recent developments in pressure-driven simulation and can be used to calculate the reliability of an entire water distribution network or that of the individual demand nodes. The method herein is probabilistic in that the random nature of link failures is accounted for. Using a sample network, it is shown that the method has several advantages including simplicity and a very high computational efficiency.