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Abstract: This article addresses the preliminary robust design of a small-scale re-entry
unmanned space vehicle by means of a hybrid optimization technique. The approach, developed
in this article, closely couples an evolutionary multi-objective algorithm with a direct transcrip-
tion method for optimal control problems. The evolutionary part handles the shape parameters
of the vehicle and the uncertain objective functions, while the direct transcription method gen-
erates an optimal control profile for the re-entry trajectory. Uncertainties on the aerodynamic
forces and characteristics of the thermal protection material are incorporated into the vehicle
model, and a Monte-Carlo sampling procedure is used to compute relevant statistical character-
istics of the maximum heat flux and internal temperature. Then, the hybrid algorithm searches
for geometries that minimize the mean value of the maximum heat flux, the mean value of
the maximum internal temperature, and the weighted sum of their variance: the evolutionary
part handles the shape parameters of the vehicle and the uncertain functions, while the direct
transcription method generates the optimal control profile for the re-entry trajectory of each
individual of the population. During the optimization process, artificial neural networks
are utilized to approximate the aerodynamic forces required by the optimal control solver.
The artificial neural networks are trained and updated by means of a multi-fidelity approach:
initially a low-fidelity analytical model, fitted on a waverider type of vehicle, is used to train the
neural networks, and through the evolution a mix of analytical and computational fluid dynamic,
high-fidelity computations are used to update it. The data obtained by the high-fidelity model
progressively become the main source of updates for the neural networks till, near the end of the
optimization process, the influence of the data obtained by the analytical model is practically
nullified. On the basis of preliminary results, the adopted technique is able to predict achiev-
able performance of the small spacecraft and the requirements in terms of thermal protection
materials.

Keywords: multi-objective evolutionary algorithms, robust multi-disciplinary design,
meta-modelling, optimal control, unmanned space vehicles

1 INTRODUCTION

Owing to the increasing capabilities of modern com-

puters, numerical simulation has been substituting a

big portion of experimental tests, and numerical opti-

mization allows handling complex multidisciplinary
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design problems. The optimization of engineering

systems means lower costs and better performance

but requires considerable computing resources. Up

to now, on sequential machines, reduced or low-fide-

lity models have been generally used during the opti-

mization process and higher fidelity models have

been used only for deeper investigation of some

obtained optimal configurations. Nowadays, newest

parallel/distributed resources, such as Beowulf clus-

ters and grids, allow different and more efficient

approaches, where the high-fidelity models can be

directly used during the optimization phase.

However, since computational resources are never

available in the ideal infinite amount, low to

medium, and high-fidelity models can be used

during the optimization process, to limit the request

for computational resources to a predefined level:

low-fidelity models are used for the preliminary

space exploration and high-fidelity ones towards the

end of the process, when the search is focused in a

more limited area [1–4].

This article presents the robust design optimization

of a small-scale unmanned space vehicle (USV), by

means of an incremental single process (ISP)

approach, which implements a multi-fidelity strategy

and allows for dealing with the complexity and com-

putational costs of the multidisciplinary optimization

process. The ISP consists of a single, integrated opti-

mization, in which the initial iterations are performed

with a low-fidelity model, and the complexity and

fidelity of the model are progressively increased

during the optimization process. An additional level

of difficulty is introduced by the fact that the USV

operates through different flow regimes, from hyper-

sonic, in upper atmosphere, to supersonic and sub-

sonic, as it approaches the Earth surface. For this

reason, the fidelity of the aerodynamic model must

be differently managed, depending on the regime.

A meta-modelling technique, based on artificial

neural network (ANN) approximators, is used to

reduce the cost of aerodynamic computations.

During the optimization process, the aerodynamic

database used to generate the meta-model is updated

with the outcomes of models with different fidelities

[5, 6]. In particular, low-fidelity ones will be used to

generate samples globally over the range of the design

parameters, while high-fidelity models will be used

to refine the meta-model locally, in later stages of

the optimization.

The optimization process is based on an evolution-

ary algorithm combining global and local search.

At every step of the evolutionary algorithm, an opti-

mal control problem, associated to each individual

of the population, is solved with a direct transcription

method. Two direct transcription methods were

tested: finite elements in time defined on spectral

basis [7, 8] and Gauss pseudospectral methods [9].

Both methods are similar in nature and perform

similarly on this problem.

Unmanned space vehicles are seen as a test-bed for

enabling technologies and as a carrier to deliver and

return experiments to and from low-Earth orbit. USVs

are a potentially interesting solution also for the

exploration of other planets or as long-range recog-

nisance vehicles. As test bed, USVs are seen as a step-

ping stone for the development of future generation

re-usable launchers but also as way to test key tech-

nologies for re-entry operations.

Examples of recent developments are the PRORA-

USV [10–12], designed by the Italian Aerospace

Research Center (CIRA) in collaboration with

Gavazzi Space, or the Boeing X-37B Orbital Test

Vehicle (OTV), that is foreseen as an alternative to

the space shuttle to deliver experiments into Earth

orbit. Among the technologies to be demonstrated

with the X-37 are improved thermal protection sys-

tems, avionics, the autonomous guidance system,

and an advanced airframe.

Here, following the path that brought from satel-

lites to current micro-cube satellites, the first

approach to the design of a small-scale USV is

described. The goal of the project is to derive the tech-

nical specifications for a small and relatively inexpen-

sive vehicle which could be used as a technological

demonstrator. The design is carried out taking into

account the availability of last generation thermal

protection systems (TPS) based on ultra-high tem-

perature ceramic materials (UHTC), which are cur-

rently considered for the design of the PRORA

vehicle [13, 14]. UHTC is a family of ceramic mate-

rials with extremely high melting temperatures, good

oxidation resistance in reentry-type environments,

and reasonably good thermal shock resistance,

which can be used to protect small radius edges of

the new generation high efficiency spacecrafts.

For this study, the parameterized shape is based on

an ideal waverider configuration [15–17], but the

geometry of the ideal waverider is here modified

in order to introduce more realistic rounded edges.

Some of the parameters defining the shape of the

vehicle plus the thickness of the TPS at the nose are

considered as the unknowns of the external evolu-

tionary process, aimed at searching for vehicles that

can re-enter with the smallest heating stresses. The

performance of each individual of the population

depends on the results of a trajectory optimization

problem, where the angle of attack as function of

time, �(t), is optimized to minimize the maximum

value of the heat flux (Fig. 1). Some properties of the

vehicle, like those of the TPS material and the
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aerodynamic approximated model, are randomized

and mean and variance of the maximum heat flux

and maximum internal temperature are computed

and utilized as objective and constraint functions

for the external optimization loop. The trajectory

optimization requires the definition of vehicle

models such as the aerodynamic, thermal, structural,

and dynamic (the vehicle is considered as a material

point) ones.

This article starts by describing the models of the

vehicle, and then details the robust multidisciplinary

design approach based on ISP, together with the

modelling and treatment of model uncertainties.

Some preliminary results show the achievable perfor-

mance of this type of vehicle and a trade-off between

optimality and robustness.

2 USV SYSTEM MODELS

This section introduces all system models used to com-

pute the characteristics of the vehicle: geometry,

aerodynamic forces, heat flux, dynamics, and

kinematics.

2.1 Geometry and shape model

The vehicle is a modified version of a waverider with

rounded edges. The waverider baseline geometry is

defined by three two-dimensional (2D) power-law

equations [17]. The planform and the upper surfaces

of the vehicle are parameterized by the length l, the

width, w, a power law exponent n, the vehicle centre

line wedge angle, �, and �, which is the oblique shock

wave inclination angle [17]. An example can be found

in Fig. 2, where the original waverider sharp-edge

shape is modified to introduce a rounded edge with

radius of curvature, Rn> 0. For the example in Fig. 2,

the parameters defining the shape are: l¼ 1.0 m,

w¼ 0.8 m, n¼ 0.3, �¼ 10�, �¼ 12�, Rn¼ 0.02 m.

In this study, l, w, n, �, and Rn will be considered

unknowns of the shape optimization problem, while

� will be considered constant.

2.2 Aerodynamic models

Two different models are used to predict the aerody-

namic characteristics of the vehicle. The former one is

a simplified analytical model, which is here applied to

the actual rounded-edge vehicle, although it was orig-

inally developed to predict the aerodynamics of the

original sharp-edge shape of the waverider configu-

ration [17], in order to have a very first approximation

of the performance at the early stage of the

design process. The latter one is a full high-fidelity

computational fluid dynamic (CFD) model based on

a finite volume integration of Reynolds-averaged

Navier–Stokes equations (RANS).

2.2.1 Analytic hypersonic model

The analytic model gives the lift L and wave drag Dw

as functions of the pressure on the upper, lower,

and base surfaces [17], which can be calculated

(a) (b) (c)Side view Top view Base view

Fig. 2 Example of vehicle geometry: l¼ 1.0 m, w¼ 0.8 m, n¼ 0.3, y¼ 10�, �¼ 12�, Rn¼ 0.02 m

Fig. 1 Description of the internal loop process
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analytically with the oblique shock theory or Prandtl–

Meyer expansion theory [18], while the viscous drag

Dv is given in analytical form, using the reference

temperature method [19].

The total drag D is¼DwþDv,uþDv,l, where Dv,u

and Dv,l are the viscous drags of the upper and

lower surfaces, respectively.

As previously anticipated, this simplified model

still considers the sharped shape of the wave rider,

and does not take into account the introduction of

the rounded edges.

2.2.2 CFD model

A commercial code (Numeca�), solving the RANS

equations, is used to obtain high-fidelity solutions

almost in the entire flight envelope and also to com-

pute initial solutions when the analytical model

cannot be applied (for super- and sub-sonic flight

regimes).

The computational domain is discretized by a

multi-block structured mesh made by 13 blocks

with near 1.2 106 total nodes. For each configuration,

the mesh is changed and adapted to the current

geometry by internal scripting on the basis of design

parameters. Since no out-of-plane flight conditions

are considered, only half of the actual domain is dis-

cretized and mirror plane conditions are imposed

into the longitudinal plane.

Four different settings are implemented and used

during the process:

(a) laminar hypersonic for Mach number, Ma,> 6.25

and Reynolds number, Re,< 9.5 104;

(b) fully turbulent (no transition model is consid-

ered) hypersonic for Ma> 6.25 and Re> 1.05 105;

(c) laminar supersonic and subsonic for Ma< 5.75

and Re< 9.5 104;

(d) fully turbulent supersonic and subsonic for

Ma< 5.75 and Re> 1.05 105.

For hypersonic conditions, the radiative equilibrium

temperature at the nose is imposed on the solid

boundaries. Real gases database is enhanced on the

basis of reported air data for high temperatures [20].

Since non-equilibrium reactions and ionization are

not taken into account, it should be expected to

obtain underestimation of the drag at the highest

altitudes, with a consequent underestimation of the

deceleration during the first part of the re-entry,

while this simplification should not affect the lift

values [21].

No solutions are computed for 5.754Ma4 6.25 or

9.5 104 4Re4 1.05 105, in order to have an aerody-

namic database as smooth as possible: since there is

no transition model between laminar and turbulent

flow and there is discontinuity between the models

for hypersonic and supersonic regimes, then com-

putations into the transition regions could be

misleading. The aerodynamic characteristics will be

approximated by a smooth ANN system, then the

ANN itself will provide smooth approximations of

the characteristics in the transition regions.

2.3 TPS and thermal model

The thermal protection system (TPS) is assumed to be

made of zirconium diboride (ZrB2) UHTC, which

has thermal properties, as given in Table 1 [22].

At this point of the project, the authors bound the

angle of attack to a maximum value of 20�; hence, the

highest heat flux is expected to be at the USV nose

cap. Thus, the whole nose cone is made of UHTC with

thickness LTPS, which will be considered as design

parameter. The rest of the vehicle is covered with a

thin shell with a constant thickness of 0.003 m [22].

For the design process, the convective heat flux

is computed in the simplest way with the analytical

formula [23]

_qconv ¼ Ke

ffiffiffiffiffiffiffi
�1
Rn

r
V 3
1 ð1Þ

where Ke¼ 1.742 10�4 (for the heat flux _qconv in W/m2).

The internal temperature (Tint) is computed by

solving the following 1D heat equation at the nose cap

@2T

@x2
¼

c �TPS

k

@T

@t
ð2Þ

with boundary conditions

_qconv � � � T 4
w þ k

dT

dx
at x ¼ 0

k
dT

dx
¼ � � T 4

int x ¼ LTPS

ð3Þ

where c is the heat capacity, rTPS the density of the

TPS material, k the thermal conductivity, e the mate-

rial emissivity, and � the Stephen–Boltzmann’s con-

stant [24]. Note that neither dissipation nor radiation

through the structure is considered, and only radia-

tion on the back of the nose cap vehicle is taken

in account. As a consequence of this, the authors

expect that the internal temperature is overestimated,

and that a re-entry trajectory with a short arc with

high _qconv might have an internal temperature,

Table 1 ZrB2 properties

Properties unit

Density 6000 kg/m3

Specific heat 628 J Kg�1 K�1

Thermal conductivity 66 W m�1 K�1

Emissivity 0.8
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which is lower than a trajectory with a long arc with

lower heat flux.

2.4 Mass model

The total mass of the USV is made of the structural

mass mst, the mass of the TPS mTPS, and the mass

of the payload (avionics and power system) mpl

m ¼ mTPS þmst þmpl ð4Þ

The mass of the payload is here assumed to be about

20 per cent of the structural mass; therefore, mpl¼ 0.2

mst. The mass of the TPS is made of the mass of the

nose mnose¼ rTPS Vn plus the mass of the thin skin

covering the rest of the vehicle mskin, where Vn is

the volume of the nose and �TPS the density of the

TPS material. The mass of the TPS skin covering the

vehicle, except the nose, is

mskin ¼ �TPS STPS dTPS ð5Þ

where dTPS is the thickness of the TPS, and STPS the

surface area except that of the nose, which can be

approximated by STPS¼ 2SpEþ SbE� Sn (SpE and SbE

are the total planform surface and the area of the

rear part of the rounded edge waverider, respectively,

and Sn the surface of the TPS nose).

The structure of the vehicle is supposed to be made

of titanium, with a density of 4400 kg/m3. The struc-

tural mass mst can be obtained from

mst ¼ �body ð2SpE þ SbE Þdboby ð6Þ

where in this case, dboby¼ 0.004 m is the thickness of

the structure of the vehicle, seen as a shell.

2.5 Dynamic equations and optimal control

subproblem

The vehicle is considered to be a point mass, whose

motion is governed by the following set of dynamic

equations [25]

_r ¼ vsin�p

_� ¼
vcos�pcos	

rcos


_
 ¼
vcos�psin	

r

_v ¼ �
Dð�Þ

m
� gsin�p

_�p ¼
Lð�Þ

mv
cos�v �

g

v
�

v

r

� �
cos�p

_	 ¼
Lð�Þ

mvcos�
sin�v �

v

r
cos �p cos 	 tan


8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð7Þ

where r is the norm of the position vector with respect

to the centre of the planet, � the longitude, 
 the lat-

itude, v the magnitude of the velocity, �p the flight

path angle, and 	 the heading angle (azimuth

of the velocity). No out-of-plane manoeuvres are

considered; thus, �v is kept equal to zero during the

whole trajectory. The angle of attack � is the control

variable; therefore, for each geometry the following

optimal control subproblem needs to be solved

min
�

max
t

_q ð8Þ

subject to dynamic equations (7) and terminal

conditions

rðt ¼ 0Þ ¼ r0

�ðt ¼ 0Þ ¼ �0


ðt ¼ 0Þ ¼ 
0

vðt ¼ 0Þ ¼ v0

�pðt ¼ 0Þ ¼ �0

	ðt ¼ 0Þ ¼ 	0

rðt ¼ tf Þ4rf

rðt ¼ tf Þ5rmin

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð9Þ

The re-entry time is free and no other terminal con-

ditions are imposed as there is no specific require-

ment on the landing point. Note that thermal

equation (2) is solved only once an optimal trajectory

is obtained from the solution of problem (8). In fact,

every optimal control profile is re-propagated for-

ward in time and heat flux and internal temperature

are computed with equations (1) and (2).

3 ROBUST MULTIDISCIPLINARY DESIGN

APPROACH

The design of the micro-USV requires the simulta-

neous optimization of the shape and trajectory con-

trol profile of the vehicle. In fact, both of them have an

impact on the maximum heat flux that the vehicle has

to withstand and therefore on its mass, size, and

shape.

The approach taken in this article hybridizes an

evolutionary multi-objective algorithm with a direct

transcription method for optimal control problems.

The evolutionary part handles the shape parameters

and the global optimization of the performance

indexes, i.e. mean values of heat flux and thermal

load, and their variances. The performance indexes

of each individual in the population are the results

of the optimal control profile coming from the solu-

tion of a non-linear programming problem. The

trajectory optimization part of the algorithm relies

on an artificial neural network system, which approx-

imates the aerodynamic forces acting on the vehicle

(two distinct ANNs are used to approximate the lift

and the drag). The aerodynamic forces are a function

of the shape of the vehicle and its operation
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conditions, such as the angle of attack, �, the speed, v,

and the altitude H (defined H¼ r�RE, where RE is the

mean radius of the Earth). In order to reduce the com-

putational costs related to the training and updating

of the ANNs, a multi-fidelity incremental approach is

adopted.

3.1 Robust design optimization under
uncertainty

The USV is designed to follow a re-entry trajectory

that minimizes the heat flux. A second performance

index is the internal temperature that together with

the heat flux defines the mass of the TPS.

Optimal control problem (8) considers the deter-

ministic value of the maximum heat flux coming

from an optimal � profile. However, a number of

model elements can be considered uncertain, such

as the aerodynamic forces and the characteristics

of the thermal protection material.

Therefore, one can associate to the nominal

value of lift Ldet and drag Ddet, the uncertain

quantities

Lunc ¼ Ldet þ Errð�, v, H ÞCE ð�, v, H ÞLdet

Dunc ¼ Ddet þ Errð�, v, H ÞCE ð�, v, H ÞDdet
ð10Þ

where Err is an error function, which depends on the

angle of attack, the speed, and the altitude H; and CE

is a parametrical sampling hyper-surface, which

maps a triplet of values of angles of attack, speed,

and altitude into the interval [�1, 1]. Since the idea

is that the uncertainties of the aerodynamic data

increase with the angle of attack, speed, and altitude;

then, Err is modelled here as a linear three-dimen-

sional (3D) surface, with values that vary from 0.2,

when angle of attack, speed, and altitude are ¼ 0, to

0.8, when the incidence is ¼ 20�, the speed is ¼

8000 m/s and the altitude is 100 km. Some of the char-

acteristics of the thermal protection material are con-

sidered uncertain as well. In particular, the thermal

conductivity, k, and the specific heat, c, can uniformly

vary in the range �0.1 of the reference value.

Thus, given a nominal trajectory with an optimal

control profile �*, Ns trajectories are re-propagated.

For each one of the Ns trajectories, a different CE

surface is built on the basis of sampled random

parameters, in order to obtain the uncertain values

for L, D for the entire flight envelope. New values of k

and c are sampled in the neighbourhood of the

deterministic value, as well. Then, the mean, Eq

and ET, and the variance, �2
q and �2

T , are computed

on the basis of the results of the randomized

re-propagation and eventually used as performance

indexes for the external loop, which optimizes the

shape.

Based on this definition of the performance

indexes, the robust design optimization under uncer-

tainties can be formulated as follows

min
d2D
½Eq , ET , �2

q þ �
2
T � ð11Þ

subject to the following constraints on the variance

�2
q4

��2
q; �2

T4
��2
T ð12Þ

the design vector d is defined as follows: d¼ [l, w, n, �,

Rn, LTPS] (five shape parameters plus the parameter

defining the dimension of the nose cone TPS

structure).

Note that a precise model of the uncertainties

should also consider other factors, such as: (a) the

fidelity of the model (analytical vs. CFD), (b) the qual-

ity of the solution (e.g. relative quality of the mesh

for CFD calculations, convergence level of the CFD

runs and the NLP problem), and (c) meta-modelling

approximation error introduced by the ANNs. All

these aspects are under current investigation and

will be presented in future works. Previous points

(a) and (b) will require a mesh sensitivity analysis

and an extensive computation campaign to assess

the errors introduced by approximations at different

levels of fidelity. While point (c) can be accomplished

by integrating a term, which is related to the density

of available verified solutions, in the Err function.

In this respect, the point (c) is the easiest to handle,

but also the least important one: since the ANNs are

updated by an evolution control approach, then the

related uncertainty is also reduced during the process

and almost nullified in the optimal region.

3.2 Multi-objective algorithm

The multi-objective optimization (MOO) problem

(11) was solved with a particular type of evolutionary

algorithm which belongs to the sub-class of estima-

tion of distribution algorithms (EDAs) [26]. EDAs

derive from one of the ways researchers tried to

overcome difficulties in finding good solutions for

complex problem by simpler evolutionary, genetic

algorithms. Generally, these methods, starting from

the current population, build a probabilistic model of

the search space, then explore the search space by a

sampling procedure that operates on the probabilis-

tic model, replacing the usual cross-over and muta-

tion operators. EDAs ensure an effective mixing

and reproduction of solution substructures due

to their ability to accurately capture the structure of

the given problem.

The specific EDA employed in this study is derived

from the MOPED (multi-objective parzen based esti-

mation of distribution) algorithm [27, 28]. MOPED is
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a multi-objective optimization algorithm for contin-

uous problems that uses the Parzen method to build a

probabilistic representation of Pareto optimal solu-

tions, with multivariate dependencies among vari-

ables. Non-dominated sorting and crowding

operators [29] are used to classify promising solutions

in the objective space, while new individuals are

obtained by sampling from the Parzen model.

The Parzen method [30] is a non-parametric

approach to kernel density estimation, which gives

rise to an estimator that converges everywhere to

the true probability density function (PDF) in the

mean square sense. Should the true PDF be uniformly

continuous, the Parzen estimator can also be made

uniformly consistent. In short, the method allocates

exactly nk identical kernels, each one centred on a

different element of the sample. More details on the

original code can be found in the cited works. In the

next section, the trajectory optimization code and

the evolutionary control technique with multi-fidelity

are detailed.

3.2.1 Trajectory optimization

Problem (8) with constraint equations (7) and (9) was

transcribed with a Gauss pseudospectral method and

with finite elements in time on spectral basis [7]. The

two approaches gave similar results; therefore, it was

decided to omit from this article the comparison

between the two approaches on this particular prob-

lem. In both cases, the trajectory is decomposed in N

elements, each of which have np collocation points.

After transcription, the optimal control problem

defined by equations (7) to (9) becomes the following

general non-linear programming problem

min
�s

max
ts

_qs ð13Þ

subject to the non-linear algebraic constraints

C ðrs , �s , vs , 	s , �s ,�s , tsÞ ¼ 0 ð14Þ

and the terminal constraints

rðt ¼ 0Þ ¼ r0

�ðt ¼ 0Þ ¼ �0


ðt ¼ 0Þ ¼ 
0

vðt ¼ 0Þ ¼ v0

�pðt ¼ 0Þ ¼ �0

	ðt ¼ 0Þ ¼ 	0

rðt ¼ tf Þ4rf

rðt ¼ tf Þ5rmin

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð15Þ

where rs, �s, fs, vs, 	s, �s, �s, and ts are the discrete

values of the time, states, and control values at the

nodes of the transcription scheme. The NLP problem

was solved with the Matlab� function fmincon. Two

different solution algorithms were tested: active-set

and interior-point. The latter demonstrated a supe-

rior robustness and convergence speed.

3.3 Evolution control and multi-fidelity

approach

The basic idea underneath evolution control (EC)

approaches is to use, throughout the optimization

process, both the true and the surrogated models in

a way that reduces the total computational time,

without loosing in precision.

Due to the necessity to limit the number of training

samples, it is very difficult to construct an initial

approximated model that is globally correct. Most

likely, the approximation will bring the optimization

algorithm to false optima, i.e. solutions that are opti-

mal for the approximated model but are suboptimal

for the true functions.

Model management or evolution control tech-

niques address this problem and avoid finding false

optima, or missing true ones.

Jin et al. [31] in their paper propose two different

approaches for the evolution control of the model:

(a) individual-based control and (b) generation-

based control. In the first approach, nv individuals

in the current population are chosen and evaluated

with the true model at each generation. In the latter,

the whole population is evaluated with the real

model, every ngcyc generations, for ngv generations,

where ngv<ngcyc. The individuals evaluated with the

true model are then introduced into the dataset in

order to locally improve the surrogated model in the

promising regions.

The method adopted for this study is a mix of both

evolution control strategies. Figure 3 summarizes the

whole optimization process. The MOO optimization

algorithm MOPED is integrated with an external pro-

cedure that monitors the status of the approximated

models. At the end of each iteration (generation),

the external procedure checks if an updated version

of the approximated model is ready and available.

If the approximated model is updated, then all the

individuals in the current population are re-evaluated

and re-classified with the updated model, before

the Parzen distribution is updated and sampled.

If the approximated model is not updated, because,

for example, a CFD computation is still running, and

the difference between the generation of the previous

update and the current generation is ngcyc, then

MOPED pauses and waits for the new update.

In an asynchronous way, an additional external pro-

cedure (bottom right block in Fig. 3) manages the

training and updating of the approximated model.
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This procedure needs as input a list of system

models ordered by increasing level of fidelity and

a scheduling report detailing how and when the

different models should be used. Then, it extracts

for each optimal trajectory the matrix Sopt¼ [l, w, n,

�, Rn, �, v, H]. Each row in matrix S corresponds to

a point along the trajectory. Each row in S is then

compared to the values in DBtrain1, the matrix of

points in the database used to train the ANNs.

The procedure works as follows.

1. At generation 0, it trains a first ANN system using

the low-fidelity model (fidelity level 0) and then

passes the ANNs to MOPED (process Initialize

App 0 in Fig. 3); DBtrain is initialized.

2. At each subsequent generation:
(a) Initialize counter ic¼ 0;
(b) while ic<¼nt

(i) extract from the population a sampled tra-

jectory and extract no operative points;
(ii) for i¼ 1 . . . no

– compute the minimum Euclidean dis-

tance dsl,i¼minjjSopt,i�DBtrain,jj where j

loops over all the points in the database

(the rows of DBtrain);

– if dsl,i>dmin,sl, then the point Sopt,i is eval-

uated and immediately inserted into the

database DBtrain, and ic¼ icþ 1; all the

solutions in the database that were com-

puted with a lower fidelity model and

have dsl<dmin,ll are discarded from

future updates of the approximating

model;

– if ic¼nt interrupt loops.

3. Every ngl generations of the global optimizer,

it increases the level of fidelity of the model, till

the maximum level is reached.

3.4 Surrogate model

General principles of evolution control do not depend

on any specific approximation technique but, of

course, the approximation approach strongly affects

the outcome of any EC strategy. Due to the particular

task, the approximator should be able to filter the

noise of the CFD models responses and correctly gen-

eralize in the broad range of shape parameters and

operative conditions. Response surfaces and artifi-

cial neural networks were considered [32–34], but

ANNs have been preferred, because they are more

robust and generally useful when there is no infor-

mation on the general structure of the function to

approximate.

When dealing with ANNs, usually radial basis NNs

are preferred due to the modest computational effort

required to train them [33, 34], but here the generic

multi layer perceptron (MLP) ANN with one hidden

layer was used, due to the expected better generaliza-

tion in regions far for the training data, and because

the computational cost and time of the online learn-

ing and update is negligible if compared to a call to

the high-fidelity model. The last point is even truer in

this case, because the approximator does not directly

approximate the objective and/or constraint func-

tions, but it is used to obtain a cheap aerodynamic

Fig. 3 MOPED with evolutionary control modification and independent approximator handler
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surrogate model of the system, which is necessary to

run the optimal control solver and then is called thou-

sands of times for each individual.

The training process is based on a Bayesian regu-

larization back-propagation [35], which limits any

overfitting problem, and whose additional costs are

to be considered negligible as well.

The eight inputs to the ANN approximators

are: the five geometric parameters (l, w, n, �, and

Rn), the angle of attack, the speed, and the altitude.

The outputs are the coefficients of lift, CL and drag,

CD. The networks are trained to reach a mean squared

error of 1 per cent on the normalized training output.

4 OPTIMIZATION RESULTS

The design space for problem (11) is defined by

the following bounds on the design parameters: the

nominal length l2 [0.9, 1.5][m], the nominal

width w2 [0.4, 0.9][m], the exponent n2 [0.2, 0.7],

the angle � 2 [6, 11,9][�], the radius of the nose

Rn2 [0.0115l, 0.026l], the thickness of the TPS at the

nose LTPS2 [0.05, 0.15][m]. The angle �, as defined

in Section 2.1, is kept fixed to 12�. Constraints are

set as ��2
q ¼

��2
T ¼ 1000.

The trajectories are discretized with five elements,

each one with seven nodes. The bounds on the vari-

ables of the trajectory optimization are: total time

Ttot2 [500, 6500][s], angle of attack �2 [0, 20][�],

radius r2 [6.380 106, 6.480 106][m], longitude

�2 [�200, 20.9559][�], latitude f2 [�200, 68.0767][�],

speed v2 [202, 104][m/s], flight path angle �p2 [�30,

10][�], heading angle 	2 [�225.7396, �55.7396][�].

The initial conditions (9) are x0¼ [REþ 105, 20.9559,

68.0767, 7700,�0.63247,�145.7641]T, where RE is the

mean radius of the Earth, while the constraints

on the final conditions are rf¼REþ 25000 m and

rmin¼REþ 15000 m.

The MOO process was run for 55 generations with a

population of 60 individuals. The initial approxima-

tors were built with 1000 samples coming from 1000

analytic model computations. The samples were

selected with a randomized Latin Hypercube.

Additionally, 100 super- and subsonic CFD computa-

tions were added to the training set to allow the

approximators to have an extended range of validity,

without the need to extrapolate. The computation of

the first database required nearly 700 h of computa-

tional time, distributed on a cluster of 15 linux 64

processors (2 days of effective time). The computa-

tions of the CFD solver were stopped when conver-

gence was obtained on the aerodynamic forces.

The characteristic parameters of the evolution con-

trol process were set as follows: nt¼no¼ 10, ngl¼ 10,

for a total of two switches; ngcyc¼ 5; dmin,sl¼ 0.3

(all the inputs are normalized to [�1, 1]); dmin,ll¼ 1.2.

At level 1, which is considered from generation 10,

CFD computations were used to verify the trajectory

points up to 50 km. At level 2, the altitude limit for the

use of CFD computation is increased to 90 km, even

if the validity of the models at this altitude is at least

questionable.

During the computation, until generation 50, the

solutions obtained with the CFD model increased

up to 465 (the results of more than 30 CFD runs

were not inserted into the database, because they

did not properly converge), allocated in the promis-

ing region of the search space, while the analytical

ones, used to build the ANN approximators, decrea-

sed to nearly 200. From generation 50 to 55, no more

new verified values are added to the ANN database.

The approximation of the Pareto front at the end of

the optimization process is shown in Fig. 4. The front

is sparse and irregular, but this was expected, and it is

due to many different reasons: (1) the objective func-

tions, which are the outcome of a min-max problem

and of a Monte-Carlo sampling, are extremely noisy;

(2) 60 individuals in the populations are not enough

to properly cover the front, but the chosen number is

a trade-off between exhaustiveness of the search and

needed computational resources; (3) moreover, the

speed and accuracy of convergence of the trajectory

optimization loop is quite sensitive to shape param-

eters and initial conditions. Better converge and

front approximation could be obtained with a better

initial guess for the control law. In this study, the

initial guess for every individual had the following

characteristics: incidence at time t¼ 0 is 18� and is

linearly decreased, with decrements d�¼ 1/550[deg/

sec], till the last point of the trajectory obtained

by direct integration satisfies the constraints on the

required final altitude.

In Fig. 5 individuals A, B, and C minimize the mean

value of the maximum heat flux, the mean value of

the maximum internal temperature, and the sum of

the variances, respectively.

The optimization is mainly driven by the easiest

way to reduce, or limit, the heat flux at the nose, i.e.

increasing the radius of the nose. This is apparently

due to the use of the analytical model, which over-

estimates the performance of the vehicle when the

radius of the edges becomes considerably big. Even

if the use of simplified solutions is limited toward the

end of the optimization process, the analytical model

biases the search path from the beginning of the

process. Moreover, it is the only model used to predict

performance of the solutions for altitudes higher than

90 km. However, in spite of that, the code is also able

to correlate a smaller radius of curvature at the nose

Micro re-entry USV 1203

Proc. IMechE Vol. 225 Part G: J. Aerospace Engineering

 at University of Strathclyde Library on March 8, 2012pig.sagepub.comDownloaded from 

http://pig.sagepub.com/


with better aerodynamic performances in hypersonic

regime.

The design parameters for solutions A, B, and C are:

Solution A: l¼ 1.496 44; w¼ 0.881 58; n¼ 0.2964;

�¼ 11.9014; Rn¼ 0.026 06; LTPS¼ 0.061 18

Solution B: l¼ 1.493 42; w¼ 0.706 51; n¼ 0.2291;

�¼ 11.7633; Rn¼ 0.031 93; LTPS¼ 0.142 50

Solution C: l¼ 1.380 74; w¼ 0.526 09; n¼ 0.2375;

�¼ 11.3022; Rn¼ 0.035 89; LTPS¼ 0.093 93

Figure 6 shows the nominal, deterministic trajecto-

ries of the three selected individuals. Individual A,

due to better aerodynamic performance, is able to

follow a higher re-entry path in the critical part of

the trajectory, limiting the heat loads (Fig. 7), even

if it is about 20 per cent heavier than solution B, and

considerably heavier than C (the masses of individ-

uals A, B, and C are 69, 58.8, and 36.8 kg, respectively).

On the other hand, solution C, which is worse in

terms of mean values, is the most robust one.

The trajectory optimization process, and, as a con-

sequence, the shape of the vehicles are strongly

affected by the model of the internal temperature,

which correlates the function ET only to the parame-

ter LTPS, with smaller dependence on the trajectory

path. Good performance of individual B in terms of

ET is basically due to the thick TPS cone at the nose.

For the same reason, even if solution of type A can fly

along a higher altitude path, because of a thinner

layer of thermal protection material at the nose, it

has higher internal temperatures.

As expected, the vehicles pass through the critical

part of the atmosphere with an angle of attack which

is close or equal to the upper limit (Fig. 8). For such an

incidence, the stagnation point is still on the nose (as

can be seen from Fig. 9), but for a real application, it is

likely that blunt-body shapes similar to the ones

obtained in this study, would even require a higher

value of the angle of attack, around 40–45�. In this

case, the stagnation point might move towards the

Fig. 4 Approximation of the Pareto Front at the end of the optimization process

Fig. 5 Optimal solutions: individual A minimizes the mean value of the maximum heat flux,
individual B minimizes the mean value of the maximum internal temperature, while
individual C minimizes the sum of the variances
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Fig. 6 Trajectories of the selected optimal solutions

Fig. 7 Convective heat flux of the selected optimal solutions

Fig. 8 Angle of attack control law
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belly of the vehicle and the current model could not

be applied.

5 CONCLUSIONS

This article addresses the robust design of a small-

scale USV for re-entry operations. A procedure,

which implements a combination of a global,

population-based solver with a direct transcription

method for optimal control problems, was proposed.

The control problem solver is interfaced with an ANN

system that gives the aerodynamic characteristics of

the vehicle as a function of the geometric parameters

and operational conditions. The ANNs are trained

and upgraded by an evolution control procedure.

Uncertainties on the aerodynamic model and some

characteristics of the thermal protection material are

introduced into the vehicle model, and the evolution-

ary part of the code searches for shapes minimizing

the mean value of the heat flux at the nose, the max-

imum internal temperature and the weighted sum of

their variances.

The whole process was able to detect realistic opti-

mal shapes, which will be the base for following stud-

ies on the design of such small space vehicles.

As expected, all the solutions do not have sharp

edges and, as a consequence, they re-enter with an

angle of attack which is towards the upper limit of 20�.

Since, in this study, the incidence is bounded to small

values, the assumption that the maximum heating

point is at the nose is still valid. On the other hand,

for angles of attack of 40� or more, which is what it is

expected if the upper limit on the angel of attack is

removed, the current model would need to be revised.

In this latter case, a correct prediction of the

real heating should be obtained by models of higher

fidelity, which combines medium-to-high-fidelity

aero-thermal dynamic computations. The authors

are already working on this new modelling approach.

Further work is also required to correctly quantify

the uncertainties. In particular, a numerical testing

campaign will be needed to correlate the uncertain-

ties with the fidelity of the models.

Moreover, since the internal control law is the

result of a noisy min–max problem, current effort

are already devoted to the quantification of the

un-smoothness level of the process and to improve

the convergence of the trajectory optimization,

which strongly affects the performance of the

obtained results. Future work will present the

adopted methodology and its effect on the global,

shape optimization process.
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APPENDIX 1

Notation

c specific heat [J/kg �K]

C* Chapman–Rubensin parameter

CD drag coefficient

CE sampling hypersurface

CL lift coefficient

d design vector

dboby thickness of the structure [m]

dmin,ll minimum euclidean distance

between the sampled trajectory

point and the points of the data-

base, evaluated with a lower fidelity

code, to accept the new point into

the database

dmin,sl minimum euclidean distance

between the sampled trajectory

point and the points of the database

evaluated with the same fidelity

code, to accept the new point into

the database

dsl euclidean distance between point in

DBtrain and the trajectory points

extracted by the current solutions

dTPS thickness of the TPS skin covering

the vehicle [m]

D drag [N]

DBtrain matrix of points in the database

used to train the ANNs

Dv viscous drag [N]

Dw Wave drag [N]

Eq, ET mean values of the maximum heat

flux and internal temperature,

respectively

Err error function

H altitude [m]

k thermal conductivity [W/m �K]

Ke constant term in the heat flux

equation (1.742 10�4)

l nominal length of the waverider [m]

L Lift [N]

Ldet Deterministic value of the Lift [N]

LTPS thickness of the TPS at the nose

Lunc Value of the Lift affected by uncer-

tainties [N]

m total mass of the vehicle [kg]

mnose mass of the TPS at the nose [kg]

mskin mass of the TPS covering the

vehicle [kg]

mst, mTPS, mpl structural mass, the mass of the

TPS, and the mass of the payload

(avionics and power system),

respectively [kg]

Ma Mach number

n power law exponent for the shape

of the waverider

nk number of kernels

ngcyc defines the generation loop in the

generation-based evolution control

approach

ngl number of generations of the global

optimizer, for which the fidelity of

the model is increased the upper

level

ngv number of generations for which

the real model has to be used for the

generation-based evolution control

approach

no number of trajectory points to

extract from each trajectory

np number of collocation points

nt maximum number of trajectory

point to extract for each

generation

nv number of individuals to evaluate

by true model in the individual-

based evolution control approach

N number of trajectory elements

Pu, Pl, Pb pressure on upper, lower, and base

surfaces, respectively [Pa]
_qconv convective heat flux [W/m2]

r norm of the position vector with

respect to the centre of the

planet [m]

rf upper bound of the constraints on

the final radius [m]

rmin lower bound of the constraints on

the final radius [m]

Re Reynolds number

RE mean radius of the Earth (const.

6.371 106 m)

Rn radius of curvature at the edges of

the vehicle [m]

S matrix with data of the trajectory

Sn surface of the TPS nose cone [m2]

Sp, Sb planform and base surface, respec-

tively [m2]

STPS TPS surface area except that of the

nose [m2]

t time [s]
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Te temperature at edge of boundary

layer in post-shock conditions [K]

Tint internal temperature, measured at

the end of the nose [K]

v magnitude of the velocity [m/s]

ve flow velocity at edge of boundary

layer in post-shock conditions

[m/s]

Vn volume of the nose [m3]

V1 free stream velocity module [m/s]

w nominal width of the waverider [m]

x longitudinal coordinate

� angle of attack [degree]

� oblique shockwave inclination

angle of the waverider

�v bank angle [degree]

e material emissivity

� centre-line wedge angle of the

waverider

�p flight path angle [degree]

� longitude [degree]

	 heading angle (azimuth of the

velocity) [degree]

�body density of the vehicle structure

[kg/m3]

�e air density at edge of boundary

layer in post-shock conditions

[kg/m3]

�TPS density of the TPS material

� the Stephen–Boltzmann’s constant

(5.6704 10�8 W / m2 K4)

�2
q , �2

T variance of the maximum heat

flux and internal temperature,

respectively


 latitude [degree]

Micro re-entry USV 1209

Proc. IMechE Vol. 225 Part G: J. Aerospace Engineering

 at University of Strathclyde Library on March 8, 2012pig.sagepub.comDownloaded from 

http://pig.sagepub.com/



