Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Bioinspired low-frequency material characterisation

Hopper, Clare and Assous, Said and Wilkinson, Paul and Gunn, David and Jackson, Peter and Rees, John and O'Leary, Richard and Lovell, Mike (2012) Bioinspired low-frequency material characterisation. Advances in Acoustics and Vibration, 2012. ISSN 1687-6261

[img]
Preview
PDF (Bio-inspired low frequency material characterisation)
927903.pdf - Final Published Version

Download (2MB) | Preview

Abstract

New carefully created signals, transmitted by high sensitivity broadband transducers in the 40-200 kHz range, allow material discrimination and thickness determination of polypropylene, polyvinylchloride and brass samples to sub-wavelength resolution. Analysis of frequency domain spectra, acquired experimentally using a water coupled through transmission experiment, enable material and thickness measurements that agree well with modelled data, with sound velocity prediction errors of less than 1 %, and thickness discrimination of at least wavelength/15. The accuracies found using our technique were similar to those obtained with higher frequencies; therefore, the lower frequency experiment demonstrates comparable performance to datasets obtained using devices possessing higher frequencies. This is advantageous when dealing with highly attenuating materials. The proposed signals and experimental approach will have an impact in the fields of non-destructive evaluation and imaging related to geophysics, and medical physics, where improving penetration whilst maintaining resolution is highly desired.