Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Airline planning benchmark problems-Part I : characterising networks and demand using limited data

Akartunali, Kerem and Boland, Natashia and Evans, Ian and Wallace, Mark and Waterer, Hamish (2013) Airline planning benchmark problems-Part I : characterising networks and demand using limited data. Computers & Operations Research, 40 (3). pp. 775-792. ISSN 0305-0548

PDF (Preprint version)
od_demand_preprint.pdf - Preprint

Download (397kB) | Preview


This paper is the first of two papers entitled “Airline Planning Benchmark Problems”, aimed at developing benchmark data that can be used to stimulate innovation in airline planning, in particular, in flight schedule design and fleet assignment. While optimisation has made an enormous contribution to airline planning in general, the area suffers from a lack of standardised data and benchmark problems. Current research typically tackles problems unique to a given carrier, with associated specification and data unavailable to the broader research community. This limits direct comparison of alternative approaches, and creates barriers of entry for the research community. Furthermore, flight schedule design has, to date, been under-represented in the optimisation literature, due in part to the difficulty of obtaining data that adequately reflects passenger choice, and hence schedule revenue. This is Part I of two papers taking first steps to address these issues. It does so by providing a framework and methodology for generating realistic airline demand data, controlled by scalable parameters. First, a characterisation of flight network topologies and network capacity distributions is deduced, based on analysis of airline data. Then a multi-objective optimisation model is proposed to solve the inverse problem of inferring OD-pair demands from passenger loads on arcs. These two elements are combined to yield a methodology for generating realistic flight network topologies and OD-pair demand data, according to specified parameters. This methodology is used to produce 33 benchmark instances exhibiting a range of characteristics. Part II extends this work by partitioning the demand in each market (OD pair) into market segments, each with its own utility function and set of preferences for alternative airline products. The resulting demand data will better reflect recent empirical research on passenger preference, and is expected to facilitate passenger choice modelling in flight schedule optimisation.