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Abstract

A nonlinear version of the Generalized Minimum Variance
(GMV) multivariable control law has been recently derived
for the control of nonlinear, possibly time-varying systems.
This paper presents the results of the controller performance
assessment against this Nonlinear GMV controller in the
scalar case. The minimum variance of the generalized output
is estimated from routine operating data given only the plant
time delay and the technique is applied to a nonlinear reactor
control example.

1 Introduction
Minimum variance (MV) criteria have been used in
stochastic performance assessment since the subject of
control loop benchmarking was introduced by Harris [7]. The
later research by Desborough and Harris [3] and Stanfelj et
al. [10] built on this work, showing how time-series analysis
can be used to estimate the minimum achievable variance of
the controlled variable from routine operating data, and
defining the ''controller performance index'' as the ratio of
this minimum variance to the actual variance. This early
work was focused mostly on assessing SISO LTI control
loops against the MV benchmark.

The ''Generalized Minimum Variance'' criterion (derived by
Clarke and Hastings-James [1,2] and re-derived by Grimble
[4] using an unconditional cost function) addressed some of
the problems related with the MV control (aggressive control
action, poor robustness) by considering a combination of the
weighted error and control signals. The GMV benchmarking
results for the scalar case were presented by Grimble [5].

Grimble [6] has recently introduced a GMV controller for
nonlinear processes. When the system is linear the results
revert to those for the linear GMV controller, and this
suggests that the algorithms used for benchmarking linear
controllers might also be applicable to the nonlinear case.
Since the benchmarking data-driven techniques have so far
been limited to the assessment against optimal linear
controllers, this would be a significant advance, achieved with

little extra cost. The aim of the following is therefore to
investigate this possibility.

2 Stochastic system description and NGMV
performance criterion

The system shown in Fig. 1 is of restricted generality and is
carefully chosen so that simple results are obtained.  The
plant itself is nonlinear and may have quite a general form
which might involve state-space, transfer operators, neural
networks or even nonlinear function look-up tables.
However, the reference and disturbance signals are assumed
to have linear time-invariant model representations. This is
not very restrictive, since in many applications the models for
the disturbance and reference signals are only LTI
approximations.

A nonlinear plant model can be written in the following form:
( )( ) ( )( )k

ku t z u t−=W W , (1)
where k denotes the magnitude of the plant time-delay.

2.1 Signals

The signals shown in the system model of Fig. 1 may be
listed as follows:

Error signal: ( ) ( ) ( )e t r t y t= − (2)

Plant output: ( ) ( )( ) ( )y t u t d t= +W (3)

Reference: ( ) ( )rr t W tζ= (4)

Disturbance signal: ( ) ( )dd t W tξ= (5)
The power spectrum for the combined reference and
disturbance signal f r d= −  can be computed as:

* *
ff rr dd r r d dФ Ф Ф W W W W= + = + (6)

and the strictly minimum phase generalized spectral-factor Yf
may be computed using:

*
f f ffY Y Ф= . (7)

Note that a measurement noise model has not been included
to simplify the equations.  This is appropriate so long as the
control cost-function weighting, introduced in the next
section, ensures the controller rolls-off at high frequencies.
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2.2 NGMV cost function

The optimal NGMV control problem involves the
minimisation of the variance of the signal ( )0 tφ  in Fig. 1.
This signal involves a dynamic cost function weighting

1( )cP z−  on the error signal, represented in transfer-function

form as: cn
c

cd

PP
P

= . It also includes a nonlinear dynamic

control signal costing operator term: ( )( )cu tF . The choice
of the dynamic weightings is critical to the design and
typically cP  is low-pass and cF  is a high-pass transfer.  The
signal:

( ) ( )( )( ) c ct P e t u tφ = + F (8)
is to be minimized in a variance sense, so that the cost index
to be minimised:

( ){ }2J E tφ= . (9)

If the plant time-delay is of magnitude k, this implies the
control at time t affects the output k steps later. For this
reason the control weighting can be defined as:

( )( ) ( )( )c c
k

ku t z u t−=F F (10)
Typically this will be a linear operator but it may also be
chosen to be nonlinear to compensate for the plant input
nonlinearities in appropriate cases.  The control weighting
operator ckF  is assumed to be invertible.
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Fig.1:  Single Degree of Freedom Feedback Control System
for the Nonlinear Plant (inferred output φ0 is dependent on

the weightings shown dotted)

2.3 Generalized plant

One approach to the above control problem is to reformulate
the GMV criterion as a simpler minimum variance problem
for a generalized plant. The expression for the controller error
can be written as:

( )( )( ) ( )k
k fe t z u t Y tε−= − +W (11)

where ε(t) is a zero-mean, unity-variance white noise and Yf
represents the combined effect of all the stochastic inputs to
the system.

The generalized output ( )tφ  can be rewritten as follows:

( )( ) ( )( )
( )

( ) ( ( ))

( ) ( )

k
c k f c

k
ck c k c f

t P z u t Y t u t

z P u t P Y t

φ ε

ε

−

−

= − + +

= − +

W F

F W
(12)

Notice that the non-linear operator in this last expression can
be considered a “generalized plant” and the notation implies
that:

( ) ( )( ) ( )( )c c c cP u P u t u t− = − �W F W F (13)

3 Optimal Nonlinear GMV Problem and
Solution

The key step in the derivation of the NGMV control law is to
split the cost function (9) into two statistically non-
overlapping terms, one of which is independent of, and the
other dependent on the controller. The control law then
results by simply setting that second term to zero.

Splitting the weighted disturbance term into unpredictable
and predictable components using the Diophantine identity
(deg F < k):

k
c fPY F z R−= + , (14)

equation (16) can be rewritten as:
( )( ) ( ) ( ) ( )k

ck c kt F t z P u t R tφ ε ε−= + ⎡ − + ⎤⎣ ⎦F W (15)

To compute the optimal control signal, inspect the form of
equation (15). Since the degree of F is required to be less
than k , it follows that the first and the remaining terms are
statistically independent, even though the second term
involves a nonlinear operator.
Furthermore, the first term on the right of (15) is independent
of the control action and the smallest variance is achieved
when the remaining terms are set to zero.  The optimal
control signal must therefore satisfy:

1( ) ( ) ( )opt
ck c ku t P R tε−= − −F W (16)

which after some manipulations can be rewritten as
1 1 1( ) [( ) ]( )opt

ck f k fu t FY RY e t− − −= − −F W (17)

The above result indicates that the restriction on the choice of
the cost weightings is that the operator ( )c k ckP −W F  must
have a stable inverse.

The generalized output under NGMV optimal control is a
linear moving-average time series:

( ) ( )opt t F tφ ε= . (18)
Its variance (the minimum value of the cost function) follows
as:

[ ]
1

2
min

0
( )

k

i
i

J Var F t fε
−

=

= =∑ (19)

and depends only on the combined disturbance/stochastic
inputs model and the plant time delay.
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3.1 Selection of the dynamic weightings

Since the properties of the benchmark controller depend on
the choice of the dynamic weightings, some guidelines are
needed to help in their selection. The weightings should
ideally reflect the requirements imposed on the control
system (good regulatory and tracking performance, load
rejection, robustness) and these are normally process-
dependent. Some rules of thumb, however, can be given for
the linear case and may be used as a starting point for the
design.

In general, the frequency dependence of the weightings can
be used to weight different frequency ranges in the error and
control signals. The error weighting Pc should typically
include an integrator, which leads to integral action in the
controller, and the control weighting is chosen as a constant
or as a lead term to ensure the controller rolls-off in high
frequencies and does not amplify the measurement noise. An
additional scalar may be used to balance the steady-state
variances of the error and control signals.

As shown in [6], if a controller Kc exists that stabilizes the
delay-free plant, then a choice of weightings leading to a
stabilizing NGMV controller can be defined as c cP K=  and

1ck = −F . This selection can therefore provide a starting
point for the design.

4 Estimation of the Controller Performance
Index from routine operating data
In this section two data-driven estimation algorithms are
reviewed which have received considerable attention in the
literature on the benchmarking of linear control systems. The
objective is to estimate the theoretically achievable lower
bound on the value of the NGMV cost function (9) from
routine closed-loop operating data.

4.1 Harris algorithm

This approach was first introduced in the seminal papers
([7],[3]) and subsequently referred to by many authors as the
‘Harris algorithm’. In this approach, an autoregressive time
series model is fitted to the filtered and detrended data:

0
( ) ( ) ( )i

i
t F t t k iφ ε α φ

∞

=

= + − −∑ (20)

The infinite sum is approximated by truncating to m terms
and the α coefficients are estimated using least squares. The
data may be written in vector-matrix form as:

Xφ α ε= + (21)
and, assuming X is invertible, the vector of autoregressive
parameters is then found as:

1( )T TX X Xα φ−=

Finally the minimum variance estimate follows as the residual
error variance:

2 1ˆ ( ) ( )
2 1

T
mv X X

N k m
σ φ α φ α= − −

− − +
(22)

where N is the data ensemble length.

4.2 FCOR algorithm

The idea behind this algorithm, which was introduced in [8],
is to directly estimate the coefficients of the polynomial F.
This can be done by cross-correlating the generalized output
φt with the estimated white noise input to the system (signal εt
in (15)), as outlined below.

The algorithm consists of two main steps:
(a) Whitening process.
The detrended generalized output φt is modelled as an
autoregressive time series and then filtered to obtain the white
noise ‘innovations’ sequence:

1
1

1 ( )
( )t t t tA q

A q
φ ε ε φ−

−= ⇒ = (23)

(b) Computing the cross-correlation between the output and
the estimated noise:

( ) [ ] , 0 1t t i ir i E f i kφε φ ε −= = = −… (24)

where the white process εt has unity variance. The right-hand
sides follow from equation (15), and the coefficients of the
polynomial F are thus determined. The minimum achievable
variance follows from (19).

4.3 Controller Performance Index

The controller performance index (CPI) is defined to be the
ratio of the minimum variance of the signal φ  to the actual
variance. That is, the CPI can be obtained as

minJ
J

κ = (25)

where Jmin is the minimum value of the cost function (9) and J
is the actual value. Clearly, 0 1κ≤ ≤ , with ‘1’ indicating
the best possible performance and no opportunity for
improvement by tuning the controller. If on the other hand the
CPI indicator κ is close to zero then retuning may be
recommended. The above scalar is well-known in controller
benchmarking as the ‘Harris index’.

4.4 Remarks

As can be seen from equation (19), the minimum achievable
variance does not depend on the control weighting. This
suggests that the above estimation algorithms can be applied
to the weighted error signal rather than to the full generalized
output.

The above remark does not imply the control weighting is
irrelevant. The operator referred to above needs to have a
stable inverse through the choice of weighting, if a stabilizing
solution is to be obtained. Moreover, the computed variances
of the control and the error signals will also depend upon this
weighting and these are outputs of nonlinear expressions.

Control 2004, University of Bath, UK, September 2004 ID-232



The above algorithms were presented as for the linear case,
however, they can be used for nonlinear GMV benchmarking
without any modifications other than a possible use of a
nonlinear control weighting (and in view of the previous
remark, this just to estimate the actual output variance). The
assumption here is that the nonlinear character of the signal
can be adequately captured by a linear time-series model.

5 Simulation example

The example comes from [9] and involves a model of a
simple chemical process. The process is an irreversible
exothermic first order reaction, which takes place in a
continuous stirred tank reactor (CSTR).

Fig. 2. CSTR process

The input and output process variables are summarised in
Table 1. It is assumed that:
- the liquid in the reactor is perfectly mixed
- the feed flow is equal to the product outflow.

Symbol unit nominal value
Product concentration Ca mol/l 0.1
Reactor temperature T K 438.54
Coolant flow rate qc l/min 103.41
Process flow rate q l/min 100
Feed concentration Ca0 mol/l 1
Feed temperature T0 K 350
Inlet coolant temperature Tc0 K 350
Table 1 Reactor input and output variables

For the purpose of our example, the behaviour of the CSTR
process is considered about a set-point where the
concentration of the product stream is 0.1 mol/l. The coolant
flow rate qc [l/min] is regarded as an input to the process and
the product concentration Ca [mol/l] is regarded as the output.

The CSTR process exhibits some rich non-linear behaviour. It
has multiple steady-state solutions and it shows a clearly non-
linear dynamic response. While for small excursions about a
nominal working point a linear model may be sufficient to
describe the behaviour of the process, a nonlinear model is
preferred over larger ranges. The open-loop step responses for
both the nonlinear model and the model linearised around the
nominal operating point are shown in Fig. 3.
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Fig. 3.  Open-loop step responses:
(a) Linear model, (b) Nonlinear model

5.1 NGMV Controller Design

The linearised model obtained in the previous subsection was
first used to design a linear GMV controller. The disturbance

model was chosen as  1

0.001
1 0.95dW

z−=
−

.

The reference model has been assumed zero, however the
integral action will be introduced to the controller through the
error weighting.

Two choices of dynamic weightings have been considered:
(i) derived directly from the existing PI design:

1
1

1

14(1 0.5 )
1c

zP
z

−

−

−
=

−
, 1 1ckF = −

(ii) based on the frequency-domain rules of thumb:
1

2
1

1 0.85
1c

zP
z

−

−

−
=

−
, 2 10.015(1 0.1 )ckF z−= − −

Both sets of weightings have also been used to design the
nonlinear controllers NGMV1 and NGMV2. The simulation
results in Fig. 4 show the transient performance with all the
above controllers in the feedback loop (without noise) for
‘large’ deviations from the nominal set-point.

5.2 Estimation of the Controller Performance Index

For the stochastic performance analysis we will consider only
the second set of weightings (i.e. the controllers GMV2 and
NGMV2). A new simulation experiment was performed to
obtain a set of noisy data. The error and control data were
then filtered to create the generalized output φ(t) and both the
Harris and the FCOR algorithms were applied to this signal.
Finally the benchmark costs have been evaluated and the
controller performance index (CPI) calculated using
expression (25). The benchmarking results for three operating
points are presented in Table 2. The figures correspond to the
FCOR algorithm but those obtained from the Harris algorithm
were almost identical.

q, T0, Ca0

q, T, Ca

qc, Tc0

T, Ca

A → B + heat
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Fig. 4.  Transient responses – ‘large’ deviations
(a) PI, (b) GMV1, (c) GMV2, (d) NGMV1, (e) NGMV2

5.3 Comments on the results

The results confirm the better performance of the nonlinear
GMV controller over the whole operating range. While the
linear GMV control is adequate for small deviations from the
nominal operating point, its performance degrades away from
it (compared with the nonlinear control). This is especially
true for higher values of the product concentration Ca, where
the nonlinearity becomes significant, and is less noticeable for
smaller values where the main difference between the linear
and nonlinear model is the steady-state offset.

Both estimation algorithms have proved to be able to return
the minimum variance estimates close to the true value. The
accuracy could be still increased by increasing the data
length, the model length, or averaging over a number of
realizations.

The performance indices confirm the above comments – the
NGMV index is close to 1 across the operating range, while
the performance of the linear GMV controller drops
significantly for the higher operating region. The PI index
seems to be relatively robust and its value suggests the
possibility of improving the stochastic performance of the
system. The robustness of this simple controller can also be
seen from the transient (noiseless) responses, where its
performance is comparable to the other optimal controllers.

Overall the transient performance of all considered controllers
is comparable. From the plots (Fig 4) it can only be seen that
the controllers GMV2 and NGMV2 have faster transients due
to greater bandwidth and that the linear controller GMV2 is
close to becoming unstable for the higher operating region.
The PI-based controllers GMV1 and NGMV1 stay close to the
PI, as it is usually the case.

Op. point PI GMV2 NGMV2
0.06 0.143 0.927 0.998
0.1 0.227 0.998 0.998
0.12 0.269 0.333 0.995

Table 2. Estimated Controller Performance Index

6 Conclusion

Design and performance assessment against a relatively
simple controller for nonlinear systems was considered.

The example demonstrated the potential benefits that can be
gained by using the nonlinear controller – these benefits
depend upon the system nonlinearities and the potential
improvement is the greater the bigger control problems are
caused by these nonlinearities. The benefits that can be gained
by using the nonlinear GMV control can be assessed by using
the benchmarking techniques. Two such techniques have been
reviewed and used to estimate the controller performance
index.
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