Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Comparative biotransformation of morphine, codeine and pholcodine in rat hepatocytes: identification of a novel metabolite of pholcodine

Jairaj, M. and Watson, D.G. and Grant, M.H. and Skellern, G.G. (2002) Comparative biotransformation of morphine, codeine and pholcodine in rat hepatocytes: identification of a novel metabolite of pholcodine. Xenobiotica, 32 (12). pp. 979-986. ISSN 0049-8254

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

1. Pholcodine (3-morpholinoethylmorphine), a semi-synthetic alkaloid, is widely used as an antitussive agent. 2. Norpholcodine [7,8-didehydro-4,5alpha-epoxy-3-(2-morpholinoethoxy)morphinan-6alpha-ol] (NP) and pholcodine-N-oxide [1(9a)-dehydro-(4aR,5S,7aR,9cS,12S)-4a,5,7a,8,9,9a-hexahydro-5-hydroxy-12-methyl-3-morpholinoethoxy-1H-8,9,c-(iminoethano)phenanthro[4,5-bcd] furan-12-oxide] (PNOX) were identified in incubations of pholcodine with freshly isolated rat hepatocytes by liquid chromatography/electrospray-mass spectrometry (LC/ESI-MS). 3. Synthesized NP and PNOX were characterized by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. 4. N-oxidation was the major metabolic pathway for pholcodine, producing a previously unreported metabolite. 5. The metabolism of morphine and codeine was also determined using freshly isolated hepatocytes. 6. For morphine, 3-glucuronidation was the major metabolic pathway, whilst for codeine it was dealkylation (O- and N-). 7. Neither morphine nor its metabolites were metabolites of pholcodine. 8. This observation supports the hypothesis that the absence of analgesic activity with pholcodine may be due to less O-dealkylation in vivo. 9. Together with the slow biotransformation of pholcodine (k(met) = 0.021 microM min(-1)) in comparison with morphine (k(met) = 0.057 microM min(-1)) and codeine (k(met) = 0.112 microM min(-1)), the results obtained were consistent with its low addiction potential and suggest that its antitussive efficacy is mediated by the parent drug or one of its metabolites other than morphine.