Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A small-scale seawater reverse-osmosis system with excellent energy efficiency over a wide operating range

Infield, D.G. (2002) A small-scale seawater reverse-osmosis system with excellent energy efficiency over a wide operating range. Desalination, 153 (1-3). pp. 229-236. ISSN 0011-9164

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A small-scale seawater reverse-osmosis system with excellent energy efficiency is presented. The system promises to deliver up to 460 l/h of potable water, from seawater (at 40,000 ppm), while consuming less than 1600 W of electrical power. This represents a specific energy consumption of less than 3.5 kWh/m3. Moreover, the flow may be controlled in order to reduce the power consumption by a factor of four without any significant loss of efficiency — the specific energy consumption remains near to 3.5 kWh/m3. The keys to these impressive figures are the energy recovery provided by the Clark pump, from Spectra Watermakers Inc., and the use of a variable water recovery ratio control algorithm, developed by CREST. The significance of the system is that it may be operated from variable intermittent renewable-energy sources, such as wind and solar-photovoltaic (PV), without need of batteries. Results of laboratory testing and extensive modeling are presented.