Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Parameter estimation for ventilated photovoltaic facades

Infield, D.G. (2002) Parameter estimation for ventilated photovoltaic facades. Building Services Engineering Research and Technology, 232 (2). pp. 81-96.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this paper, the estimation of thermal parameters that describe the performance of ventilated photovoltaic (PV) façades integrated into buildings is investigated. In the most simpli” ed representation of the thermal characteristics of the building, the key factors are the coef” cients of solar heat gain and total heat loss. For an integrated building with a ventilated PV façade, a more accurate representation involves the interactions between the interior space, the ventilated space of the façade construction, the exterior PV elements, and the outside environmental conditions. The heat loss from the interior consists of both losses to ambient and to the ventilation air via the inner glazing or panelling. A direct numerical approach has been developed to identify the parameters that describe these heat transfer processes. The method allows the heat transfer coef” cients to be obtained directly from data measured on an operational ventilated PV façade. The results are compared with values taken from conventional practice.