Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Parameter estimation for ventilated photovoltaic facades

Infield, D.G. (2002) Parameter estimation for ventilated photovoltaic facades. Building Services Engineering Research and Technology, 232 (2). pp. 81-96.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this paper, the estimation of thermal parameters that describe the performance of ventilated photovoltaic (PV) façades integrated into buildings is investigated. In the most simpli” ed representation of the thermal characteristics of the building, the key factors are the coef” cients of solar heat gain and total heat loss. For an integrated building with a ventilated PV façade, a more accurate representation involves the interactions between the interior space, the ventilated space of the façade construction, the exterior PV elements, and the outside environmental conditions. The heat loss from the interior consists of both losses to ambient and to the ventilation air via the inner glazing or panelling. A direct numerical approach has been developed to identify the parameters that describe these heat transfer processes. The method allows the heat transfer coef” cients to be obtained directly from data measured on an operational ventilated PV façade. The results are compared with values taken from conventional practice.