Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Dynamics of the development of an electrical field across cellular membranes-PEF inactivation of microorganisms

Timoshkin, I. and Mackersie, J.W. and MacGregor, S.J. and Fouracre, R.A. and Anderson, J.G. (2004) Dynamics of the development of an electrical field across cellular membranes-PEF inactivation of microorganisms. In: 26th International Power Modulator Symposium, 2004 and 2004 High-Voltage Workshop, 2004-05-23 - 2004-05-26.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The pulsed electric field (PEF) processing of liquid and pumpable products has attracted significant interest from the pulsed power and bioscience research communities due to the nonthermal mechanisms of inactivation which results in preservation of the original characteristics of the product. Although the PEF process has been studied for several decades, the physical mechanisms of the interaction of pulsed electrical fields with microorganisms is still not understood fully. The present work is a study of the dynamics of the electrical field in the PEF treatment chamber with dielectric barriers and in the microorganism's membrane. It was found that the field in the membrane reaches a maximal value which could be two orders of magnitude higher than the original electrical field in the chamber and this value was attained in a time comparable to the Maxwell-Wagner relaxation time, τMW. Thus, the optimal duration of the field pulse during the PEF treatment should be equal to the time τMW