Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Alkali metal-1-azaallyl complexes: X-ray crystallographic, NMR spectroscopic and ab initio calculational studies

Armstrong, D R and Clegg, W and Dunbar, L and Liddle, S T and MacGregor, M and Mulvey, Robert and Reed, D and Quinn, S A (1998) Alkali metal-1-azaallyl complexes: X-ray crystallographic, NMR spectroscopic and ab initio calculational studies. Journal of the Chemical Society, Dalton Transactions (20). pp. 3431-3436. ISSN 0300-9246

Full text not available in this repository. (Request a copy from the Strathclyde author)


A series of alkali metal-1-azaallyl complexes, [{CH3CH2CH2C(H)C(Bu-t)N(H)Li . HMPA}(2)], 1, [{CH3CH2CH2C(H)C(Bu-t)N(H)Na . 2HMPA}(2)] 2 and [{CH2C(Bu-t)N(H)Li . HMPA}(2)] 3, has been synthesised by treating each appropriate metal alkyl reagent (n-butyllithium, n-butylsodium or methyllithium, respectively) with tert-butyl cyanide in the presence of the Lewis base HMPA [hexamethylphosphoramide, (Me2N)(3)P=O]. X-Ray crystallographic studies have established that each structure is dimeric and built around a precisely or approximately centrosymmetric rhomboidal (N-M)(2) ring. However, the nature of the azaallyl-metal bonding differs with 1 and 2 displaying a terminal eta(1)-N arrangement, while 3 displays a chelating eta(3)-NCC arrangement. H-1 and C-13 NMR spectroscopic studies suggest that these distinct bonding modes an retained in [H-2(8)]toluene solution. Long-range ((4)J) "W" coupling (2.4 Hz) is observed for 3 between the NH and one of the alpha-CH2 protons, consistent with the trans orientation of the NH and Cchemical anionC linkages seen in the solid state. The preference for this geometry is confirmed by ab initio MO calculations on models of 3, which examine the energetics of the ketimide-azaallyl isomerism involved in the formation of 1-3.