Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

High resolution mapping of sediment organic matter from acoustic reflectance data

Serpetti, N. and Heath, Michael and Rose, M. and Witte, U. (2012) High resolution mapping of sediment organic matter from acoustic reflectance data. Hydrobiologia, 680 (1). 265–284. ISSN 0018-8158

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Spatial mapping of the marine environment is challenging when the properties concerned are difficult to measure except by shore-based analysis of discrete samples of material, usually from sparsely distributed sites. This is the case for many seabed sediment properties. We developed an indirect approach to mapping the organic content of coastal sediments from hydro-acoustic reflectance data. The basis was that both organic matter and acoustic reflectance are related to sediment type and grain size composition. Hence there is a collateral relationship between organic matter content and reflectance properties which can be exploited to enable high resolution mapping. We surveyed an area of seabed off the east coast of Scotland using a vessel mounted single beam echosounder with RoxAnn signal processing. Organic carbon, nitrogen and phytoplankton pigment contents were then measured in material from grab and core samples collected at intervals over a year. Relationships between the organic components and hydroacoustic characteristics were derived by general additive models, and used to construct high resolution maps from the acoustic survey data. Our method is an advance on traditional interpolation techniques sparse spatial data, and represents a generic approach that could be applied to other properties.