Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Ecosystem limits to food web fluxes and fisheries yields in the North Sea simulated with an end-to-end food web model

Heath, Michael (2012) Ecosystem limits to food web fluxes and fisheries yields in the North Sea simulated with an end-to-end food web model. Progress in Oceanography, 102. pp. 42-66. ISSN 0079-6611

[img]
Preview
PDF (Author final version of accepted article)
Heath_REVISED_CAMEO_PIO_paper_24_02_2012_SINGLE_SPACED_with_diagrams.pdf - Accepted Author Manuscript
License: Unspecified

Download (626kB) | Preview
[img]
Preview
PDF (Online supplementary file to accompany published manuscript)
REVISED_CAMEO_PIO_paper_SUPPLEMENTARY_MATERIAL_24_02_2012.pdf - Accepted Author Manuscript
License: Unspecified

Download (662kB) | Preview

Abstract

Equilibrium yields from an exploited fish stock represent the surplus production remaining after accounting for losses due to predation. However, most estimates of maximum sustainable yield, upon which fisheries management targets are partly based, assume that productivity and predation rates are constant in time or at least stationary. This means that there is no recognition of the potential for interaction between different fishing sectors. Here, an end-to-end ecosystem model is developed to explore the possible scale and mechanisms of interactions between pelagic and demersal fishing in the North Sea. The model simulates fluxes of nitrogen between detritus, inorganic nutrient and guilds of taxa spanning phytoplankton to mammals. The structure strikes a balance between graininess in space, taxonomy and demography, and the need to constrain the parameter-count sufficiently to enable automatic parameter optimization. Simulated annealing is used to locate the maximum likelihood parameter set, given the model structure and a suite of observations of annual rates of production and fluxes between guilds. Simulations of the impact of fishery harvesting rates showed that equilibrium yields of pelagic and demersal fish were strongly interrelated due to a variety of top-down and bottom-up food web interactions. The results clearly show that management goals based on simultaneously achieving maximum sustainable biomass yields from all commercial fish stocks is simply unattainable. Trade-offs between, for example, pelagic and demersal fishery sectors and other properties of the ecosystem have to be considered in devising an overall harvesting strategy.