Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

X-ray crystallographic studies and comparative reactivity studies of a sodium diisopropylamide (NDA) complex and related hindered amides

Andrews, Philip C. and Barnett, N.D.R. and Mulvey, Robert and Clegg, W. and O'Neil, P.A. and Barr, Donald and Cowton, Lucy and Dawson, Andrea J. and Wakefield, Basil J. (1996) X-ray crystallographic studies and comparative reactivity studies of a sodium diisopropylamide (NDA) complex and related hindered amides. Journal of Organometallic Chemistry, 518 (1-2). pp. 85-95. ISSN 0022-328X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Two related sodium amide complexes derived from secondary amines with bulky organic substituents have been synthesised and crystallographically characterised. Both [(Pr-i)(2)NNa(TMEDA)](2) and [Cy(Pr-i)NNa(TMEDA)](2) adopt dimeric crystal structures with a central, planar (nitrogen-metal)(2) azametallocycle, a now familiar feature in both lithium amide and sodium amide chemistry. TMEDA ligands chelate in their usual bidentate manner making the Na+ cations four-coordinate with a distorted tetrahedral geometry. In the latter complex, the amido substituents are disposed in a trans conformation with respect to the (NNa)(2) ring plane. The deprotonating ability of the former complex has been tested against that of the parent amide [(Pr-i)(2)NNa](infinity) and the lithium congener [(Pr-i)(2)NLi](infinity) (LDA) in a series of simple organic reactions: selective enolate formation from 2-octanone and 2-methylcyclohexanone; synthesis of diphenylacetic acid via diphenylmethane. In general, the performance of the sodium reagents compares favourably with that of the lithium reagent.

Item type: Article
ID code: 38171
Keywords: lithium, sodium, amide, crystal structure, lithium diisopropylamide, ladder, solid state, hexamethylphosphoric triamide, enolate formation, ring, Chemistry, Materials Chemistry, Biochemistry, Organic Chemistry, Physical and Theoretical Chemistry, Inorganic Chemistry
Subjects: Science > Chemistry
Department: Faculty of Science > Pure and Applied Chemistry
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 05 Mar 2012 16:44
    Last modified: 05 Sep 2014 15:22
    URI: http://strathprints.strath.ac.uk/id/eprint/38171

    Actions (login required)

    View Item