Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

X-ray crystallographic studies and comparative reactivity studies of a sodium diisopropylamide (NDA) complex and related hindered amides

Andrews, Philip C. and Barnett, N.D.R. and Mulvey, Robert and Clegg, W. and O'Neil, P.A. and Barr, Donald and Cowton, Lucy and Dawson, Andrea J. and Wakefield, Basil J. (1996) X-ray crystallographic studies and comparative reactivity studies of a sodium diisopropylamide (NDA) complex and related hindered amides. Journal of Organometallic Chemistry, 518 (1-2). pp. 85-95. ISSN 0022-328X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Two related sodium amide complexes derived from secondary amines with bulky organic substituents have been synthesised and crystallographically characterised. Both [(Pr-i)(2)NNa(TMEDA)](2) and [Cy(Pr-i)NNa(TMEDA)](2) adopt dimeric crystal structures with a central, planar (nitrogen-metal)(2) azametallocycle, a now familiar feature in both lithium amide and sodium amide chemistry. TMEDA ligands chelate in their usual bidentate manner making the Na+ cations four-coordinate with a distorted tetrahedral geometry. In the latter complex, the amido substituents are disposed in a trans conformation with respect to the (NNa)(2) ring plane. The deprotonating ability of the former complex has been tested against that of the parent amide [(Pr-i)(2)NNa](infinity) and the lithium congener [(Pr-i)(2)NLi](infinity) (LDA) in a series of simple organic reactions: selective enolate formation from 2-octanone and 2-methylcyclohexanone; synthesis of diphenylacetic acid via diphenylmethane. In general, the performance of the sodium reagents compares favourably with that of the lithium reagent.