Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

The effect of cell thickness on energy production of amorphous silicon solar cells

Vorasayan, Pongpan and Betts, Thomas R. and Gottschalg, Ralph and Infield, D.G. and Tiwari, A.N (2005) The effect of cell thickness on energy production of amorphous silicon solar cells. In: 2nd Photovoltaic Science, Applications and Technology Conference, 2005-04-14 - 2005-04-15.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Solar cells are currently evaluated under laboratory conditions and not under realistic operating conditions. Amorphous silicon (a-Si) devices exhibit a complicated dependence on operating conditions, with a major concern being the degradation of these devices in realistic operation. Optimising these devices for energy production of the stabilised state is dependent on many factors, with one of the main inputs being the overall thickness of the cell. In this paper, the effect of intrinsic layer (i-layer) thickness on the cell performance, the degradation and also the energy production under realistic conditions are investigated. It is apparent from the experiment that there has to be an optimisation of the i-layer thickness to maximise the light absorption and minimise the degradation, if higher performance and energy production is to be achieved.