Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Time-series Gaussian process regression based on toeplitz computation of O(N2) operations and O(N)-level storage

Zhang, Y. and Leithead, W.E. and Leith, D.J. (2005) Time-series Gaussian process regression based on toeplitz computation of O(N2) operations and O(N)-level storage. In: Proceedings of the 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. IEEE, pp. 3711-3716. ISBN 0-7803-9567-0

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Gaussian process (GP) regression is a Bayesian nonparametric model showing good performance in various applications. However, its hyperparameter-estimating procedure may contain numerous matrix manipulations of O(N3) arithmetic operations, in addition to the O(N2)-level storage. Motivated by handling the real-world large dataset of 24000 wind-turbine data, we propose in this paper an efficient and economical Toeplitz-computation scheme for time-series Gaussian process regression. The scheme is of O(N2) operations and O(N)-level memory requirement. Numerical experiments substantiate the effectiveness and possibility of using this Toeplitz computation for very large datasets regression (such as, containing 10000~100000 data points).