Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Characterisation of a novel mouse liver aldo-keto reductase AKR7A5

Hinshelwood, A. and McGarvie, G. and Ellis, E. (2002) Characterisation of a novel mouse liver aldo-keto reductase AKR7A5. FEBS Letters, 523 (1-3). pp. 213-218. ISSN 0014-5793

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We have characterised a novel aldo-keto reductase (AKR7A5) from mouse liver that is 78% identical to rat aflatoxin dialdehyde reductase AKR7A1 and 89% identical to human succinic semialdehyde (SSA) reductase AKR7A2. AKR7A5 can reduce 2-carboxybenzaldehyde (2-CBA) and SSA as well as a range of aldehyde and diketone substrates. Western blots show that it is expressed in liver, kidney, testis and brain, and at lower levels in skeletal muscle, spleen heart and lung. The protein is not inducible in the liver by dietary ethoxyquin. Immunodepletion of AKR7A5 from liver extracts shows that it is one of the major liver 2-CBA reductases but that it is not the main SSA reductase in this tissue.