Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Two-pore domain k channel, TASK-1, in pulmonary artery smooth muscle cells

Gurney, A.M. and Osipenko, O.N. and MacMillan, D. and McFarlane, K.M. and Tate, R.J.S.J. and Kempsill, F.E.J. (2003) Two-pore domain k channel, TASK-1, in pulmonary artery smooth muscle cells. Circulation Research, 93. pp. 957-964. ISSN 0009-7330

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Pulmonary vascular tone is strongly influenced by the resting membrane potential of smooth muscle cells, depolarization promoting Ca2+ influx, and contraction. The resting potential is determined largely by the activity of K+-selective ion channels, the molecular nature of which has been debated for some time. In this study, we provide strong evidence that the two-pore domain K+ channel, TASK-1, mediates a noninactivating, background K+ current (IKN), which sets the resting membrane potential in rabbit pulmonary artery smooth muscle cells (PASMCs). TASK-1 mRNA was found to be present in PASMCs, and the membranes of PASMCs contained TASK-1 protein. Both IKN and the resting potential were found to be exquisitely sensitive to extracellular pH, acidosis inhibiting the current and causing depolarization. Moreover, IKN and the resting potential were enhanced by halothane (1 mmol/L), inhibited by Zn2+ (100 to 200 μmol/L) and anandamide (10 μmol/L), but insensitive to cytoplasmic Ca2+. These properties are all diagnostic of TASK-1 channels and add to previously identified features of IKN that are shared with TASK-1, such as inhibition by hypoxia, low sensitivity to 4-aminopyridine and quinine and insensitivity to tetraethylammonium ions. It is therefore concluded that TASK-1 channels are major contributors to the resting potential in pulmonary artery smooth muscle. They are likely to play an important role in mediating pulmonary vascular responses to changes in extracellular pH, and they could be responsible for the modulatory effects of pH on hypoxic pulmonary vasoconstriction.