Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Photoluminescence properties of dilute nitride InNAs/InGaAs/InP multi-quantum wells for mid-infrared applications

Sun, H.D. and Clark, A.H. and Calvez, S. and Dawson, M.D. and Shih, D.K. and Lin, H.H. (2005) Photoluminescence properties of dilute nitride InNAs/InGaAs/InP multi-quantum wells for mid-infrared applications. In: International Conference on Indium Phosphide and Related Materials, 2005-05-08 - 2005-05-12.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report the photoluminescence characterization of a series InNAs/InGaAs multi-quantum wells (MQWs) of various N content on InP substrates. The emission wavelength of these QWs can be tuned effectively by N content. However, the bowing effect is weaker than in GaNAs and GaInNAs. The optical properties of these hetero-structures are closely related to quality of the interface between the barriers and the QWs which is influenced by N content. Two effects of N in this material system have been clarified. On the one hand, the incorporation of N into InAs matrix is beneficial as far as the reduction of band-gap and the lattice constant are concerned. On the other hand, the PL efficiency increases dramatically with the increase of N content. Optimized design and growth could be achieved by trading off between these two effects