Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Symbol synchronisation implementation for low-power RF communication in wireless sensor networks

MacEwen, N.C. and Crockett, L.H. and Pfann, E. and Stewart, R.W. (2005) Symbol synchronisation implementation for low-power RF communication in wireless sensor networks. In: Conference Record of the 39th Asilomar Conference on Signals, Systems and Computers, 2005. IEEE, 447 - 451. ISBN 1-4244-0131-3

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Speckled Computing is a novel vision of a wireless sensor network consisting of small nodes which can sense, compute and network wirelessly. The nodes will individually have limited power and processing resources, but together will form a powerful processing system. Electrical power resources at such a volume are severely restricted, and as such design decisions are made with low-power as the first priority. This work examines the use of Manchester encoding in the digital transceiver to reduce the complexity of symbol synchronisation. A Manchester decoder has been implemented which has the useful property of being tolerant to oscillator inaccuracies, allowing a cheap and low-power clock source to be employed. A realistic implementation of the decoder using rectangular pulseshaping and an oversampling ratio of 8 allows an on-chip oscillator tolerance of more than 11%.