Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Thermal conductance of laterally-wet-oxidised GaAs/AlxOy Bragg reflectors

Le Du, M. and Massoubre, David and Harmand, J.C. and Oudar, J.L. (2006) Thermal conductance of laterally-wet-oxidised GaAs/AlxOy Bragg reflectors. Electronics Letters, 42 (18). pp. 1060-1062. ISSN 0013-5194

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Thermal resistivity measurements were carried out on GaAs-based monolithic saturable absorber microcavities. Two-types of microcavity mirrors were compared: GaAs/AlAs against GaAs/AlxOy Bragg reflectors processed by lateral-wet-oxidation of Al(Ga)As layers. It is found that GaAs/AlxOy mirrors are not efficient heat dissipators, the GaAs/AlxOy microcavity structure showing a thermal resistivity more than ten times higher than the GaAs/AlAs structure. Using modelling to fit the experimental data, thermal conductivity of the 250 nm AlxOy layers is estimated to be approximately 0.007 WK–1cm–1. These results illustrate a significant drawback related to the use of thick wet-oxidised Al(Ga)As/GaAs layers