Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Examining structure-activity correlations of some high activity enzyme preparations for low water media

Solanki, Kusum and Halling, Peter J. and Gupta, Munishwar N. (2012) Examining structure-activity correlations of some high activity enzyme preparations for low water media. Bioresource Technology, 115 (July). pp. 147-151.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A first study of the comparison of structures of enzymes (by FT-IR and CD) in different high activity (in low water media) preparations is reported. Using chymotrypsin and subtilisin as models, we have studied various factors that distinguish enzyme precipitated and rinsed with propanol (EPRP), crosslinked enzyme aggregates (CLEA), protein coated microcrystals (PCMC) and crosslinked protein coated microcrystals (CLPCMC). The suspensions in organic media were assayed for catalytic activity, and structures were probed by FT-IR and CD measurements. CD studies of enzyme suspensions were possible by using a rotating cell accessory. There was a generally good correlation between higher catalytic activity and retention of native structures. Activity and retention of native structure was always higher if aqueous enzyme solution was added to propanol rather than vice versa in the precipitation step of these preparations. The work identifies factors which may lead to better biocatalyst designs for low water media.