Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Examining structure-activity correlations of some high activity enzyme preparations for low water media

Solanki, Kusum and Halling, Peter J. and Gupta, Munishwar N. (2012) Examining structure-activity correlations of some high activity enzyme preparations for low water media. Bioresource Technology, 115 (July). pp. 147-151.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A first study of the comparison of structures of enzymes (by FT-IR and CD) in different high activity (in low water media) preparations is reported. Using chymotrypsin and subtilisin as models, we have studied various factors that distinguish enzyme precipitated and rinsed with propanol (EPRP), crosslinked enzyme aggregates (CLEA), protein coated microcrystals (PCMC) and crosslinked protein coated microcrystals (CLPCMC). The suspensions in organic media were assayed for catalytic activity, and structures were probed by FT-IR and CD measurements. CD studies of enzyme suspensions were possible by using a rotating cell accessory. There was a generally good correlation between higher catalytic activity and retention of native structures. Activity and retention of native structure was always higher if aqueous enzyme solution was added to propanol rather than vice versa in the precipitation step of these preparations. The work identifies factors which may lead to better biocatalyst designs for low water media.