Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Analysis of thermal limitations in high-speed microcavity saturable absorber all-optical switching gates

Massoubre, David and Oudar, J.L. and O'Hare, A. and Gay, M. and Bramerie, L. and Simon, J.-C. and Shen, A. and Decobert, J. (2006) Analysis of thermal limitations in high-speed microcavity saturable absorber all-optical switching gates. Journal of Lightwave Technology, 24 (9). pp. 3400-3408. ISSN 0733-8724

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The limitations owing to device heating and thermo-optic effects in high-speed quantum-well microcavity saturable absorber devices are investigated both theoretically and experimentally. A simplified theoretical description of the device electronic, thermal, and optical properties is developed and applied to the modeling of the device switching characteristics for reamplification + reshaping step (2R) all-optical regeneration. These predictions are compared to nonlinear optical measurements performed with switching pulses of fixed duration and variable repetition rate on two devices with significantly different thermal properties. It is shown that proper optimization of the device thermal properties is crucial to avoid the degradation of device performance at high bit rate. It is also shown that the negative effects of optically induced heating on the switching contrast may be compensated to some extent by operating the device on the long wavelength side of the microcavity resonance