Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

The molecular structure of pentaborane(9) with halogen substituents in apical and basal positions, determined by electron diffraction and theoretical calculations

Greatrex, R. and Workman, C. and Johnston, B. and Rankin, D.W.H. and Robertson, H.E. (2004) The molecular structure of pentaborane(9) with halogen substituents in apical and basal positions, determined by electron diffraction and theoretical calculations. Dalton Transactions, 11. pp. 1719-1725. ISSN 1472-7773

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The molecular structures of 1-bromo–pentaborane(9) and 2-bromo–pentaborane(9) in the gas phase have been determined by electron diffraction and ab initio and DFT computational methods. Computational methods have also been applied to the fluoro and chloro analogues, to 1,2-dibromo-pentaborane(9), and to the parent unsubstituted borane. The electronic effects of halogen substitution on the borane cage are remarkably small, particularly for chlorine and bromine substituents, and steric effects are also minimal, even in the compound with two bromine atoms. The largest effects are (a) lengthening of B(base)–B(apex) bonds adjacent to the halogen in the 2-isomers, with an associated shortening of the opposite base–apex bond, (b) shortening of the B(base)–B(apex) bond in the 1-fluoro compound, and (c) increase of the B(base)–B(apex)–F angle in 1-F–B5H8, but a decrease in this angle in the 2-bromo compounds.