Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Self-assembly of cetyl linear polyethylenimine to give micelles, vesicles, and dense nanoparticles

Gray, A. (2004) Self-assembly of cetyl linear polyethylenimine to give micelles, vesicles, and dense nanoparticles. Macromolecules, 37 (24). pp. 9114-9122. ISSN 0024-9297

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The involvement of macromolecules in the formation of biological and other membranes has important implications for structural biology and nanoengineering. Using cetyl polyethylenimines of varying molecular weight and hydrophobicity, it was found that polymer hydrophobicity (mol % cetylation) controlled the nature of the self-assembly, giving micellar (cetyl groups < 23 mol %), vesicular (cetyl groups = 23−42 mol % or cetyl groups = 3−42 mol % with cholesterol), and dense nanoparticle (cetyl groups ≥ 49 mol %) aggregates. Thick (up to 15 nm) membranes due to the polyelectrolyte coating with the amphiphile were observed with low levels of cetylation only, and both dn/dc (indirectly) and vesicle/nanoparticle size (directly) varied linearly with mol % cetylation (r = 0.96−0.99).