Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Self-assembly of cetyl linear polyethylenimine to give micelles, vesicles, and dense nanoparticles

Gray, A. (2004) Self-assembly of cetyl linear polyethylenimine to give micelles, vesicles, and dense nanoparticles. Macromolecules, 37 (24). pp. 9114-9122. ISSN 0024-9297

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The involvement of macromolecules in the formation of biological and other membranes has important implications for structural biology and nanoengineering. Using cetyl polyethylenimines of varying molecular weight and hydrophobicity, it was found that polymer hydrophobicity (mol % cetylation) controlled the nature of the self-assembly, giving micellar (cetyl groups < 23 mol %), vesicular (cetyl groups = 23−42 mol % or cetyl groups = 3−42 mol % with cholesterol), and dense nanoparticle (cetyl groups ≥ 49 mol %) aggregates. Thick (up to 15 nm) membranes due to the polyelectrolyte coating with the amphiphile were observed with low levels of cetylation only, and both dn/dc (indirectly) and vesicle/nanoparticle size (directly) varied linearly with mol % cetylation (r = 0.96−0.99).