Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Self-assembly of cetyl linear polyethylenimine to give micelles, vesicles, and dense nanoparticles

Gray, A. (2004) Self-assembly of cetyl linear polyethylenimine to give micelles, vesicles, and dense nanoparticles. Macromolecules, 37 (24). pp. 9114-9122. ISSN 0024-9297

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The involvement of macromolecules in the formation of biological and other membranes has important implications for structural biology and nanoengineering. Using cetyl polyethylenimines of varying molecular weight and hydrophobicity, it was found that polymer hydrophobicity (mol % cetylation) controlled the nature of the self-assembly, giving micellar (cetyl groups < 23 mol %), vesicular (cetyl groups = 23−42 mol % or cetyl groups = 3−42 mol % with cholesterol), and dense nanoparticle (cetyl groups ≥ 49 mol %) aggregates. Thick (up to 15 nm) membranes due to the polyelectrolyte coating with the amphiphile were observed with low levels of cetylation only, and both dn/dc (indirectly) and vesicle/nanoparticle size (directly) varied linearly with mol % cetylation (r = 0.96−0.99).