Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Forced convection spinning of gas separation hollow fibre membranes: some underlying factors, mechanisms and effects

Gordeyev, S.A. and Shilton, S.J. (2004) Forced convection spinning of gas separation hollow fibre membranes: some underlying factors, mechanisms and effects. Journal of Membrane Science, 229 (1-2). pp. 225-233. ISSN 0376-7388

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Forced convection spinning of polysulfone gas separation hollow fibre membranes was investigated. Spinneret geometry, spinning solution composition, extrusion shear, bore fluid rate, and forced convection residence time and gas rate were considered. A mass transfer model of the forced convection process was developed to help understand the effect of spinning conditions on membrane properties. Membrane pressure-normalised fluxes, selectivities and bursting pressures were discussed in terms of this new model and in terms of induced molecular orientation, polymer solution relaxation time, phase inversion (in particular skin formation) and membrane fine structural details as deduced by resistance modelling of gas transmission.