Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Field-effect mobility of amorphous silicon thin-film transistors under strain

Gleskova, H. and Hsu, P. I. and Xi, Z. and Sturm, J. C. and Suo, Z. and Wagner, Sigurd (2004) Field-effect mobility of amorphous silicon thin-film transistors under strain. Journal of Non-Crystalline Solids, 338-340 (1 SPEC). pp. 732-735. ISSN 0022-3093

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We applied strain ranging from 1% compressive to ∼0.3% tensile to a-Si:H TFTs on polyimide foils by bending them inward or outward, or by stretching them in a microstrain tester. We also applied strain to a-Si:H TFTs by deforming a flat substrate into a spherical dome. In each case, compression lowered and tension raised the on-current and hence the electron field-effect mobility. We conclude that compressive strain broadens both the valence and conduction band tails of the a-Si:H channel material, and thus reduces the effective electron mobility. We show that the mobility can be used as an indicator of local mechanical strain.