Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Field-effect mobility of amorphous silicon thin-film transistors under strain

Gleskova, H. and Hsu, P. I. and Xi, Z. and Sturm, J. C. and Suo, Z. and Wagner, Sigurd (2004) Field-effect mobility of amorphous silicon thin-film transistors under strain. Journal of Non-Crystalline Solids, 338-340 (1 SPEC). pp. 732-735. ISSN 0022-3093

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We applied strain ranging from 1% compressive to ∼0.3% tensile to a-Si:H TFTs on polyimide foils by bending them inward or outward, or by stretching them in a microstrain tester. We also applied strain to a-Si:H TFTs by deforming a flat substrate into a spherical dome. In each case, compression lowered and tension raised the on-current and hence the electron field-effect mobility. We conclude that compressive strain broadens both the valence and conduction band tails of the a-Si:H channel material, and thus reduces the effective electron mobility. We show that the mobility can be used as an indicator of local mechanical strain.