Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Electron mobility in amorphous silicon thin-film transistors under compressive strain

Gleskova, H. and Wagner, S. (2001) Electron mobility in amorphous silicon thin-film transistors under compressive strain. Applied Physics Letters, 79 (20). pp. 3347-3349. ISSN 0003-6951

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We evaluated amorphous silicon thin-film transistors under uniaxial compressive strain of up to 1%. The on-current and hence the electron linear mobility decrease. The off-current, leakage current, and the threshold voltage do not change. The mobility decreases linearly with applied compressive strain. Upon the application of stress for up to 40 h the mobility drops "instantly" and then remains unchanged. We conclude that compressive strain broadens both the valence and conduction band tails of the a-Si:H channel material, and thus reduces the effective electron mobility.