Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Electron mobility in amorphous silicon thin-film transistors under compressive strain

Gleskova, H. and Wagner, S. (2001) Electron mobility in amorphous silicon thin-film transistors under compressive strain. Applied Physics Letters, 79 (20). pp. 3347-3349. ISSN 0003-6951

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We evaluated amorphous silicon thin-film transistors under uniaxial compressive strain of up to 1%. The on-current and hence the electron linear mobility decrease. The off-current, leakage current, and the threshold voltage do not change. The mobility decreases linearly with applied compressive strain. Upon the application of stress for up to 40 h the mobility drops "instantly" and then remains unchanged. We conclude that compressive strain broadens both the valence and conduction band tails of the a-Si:H channel material, and thus reduces the effective electron mobility.