Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

150°C amorphous silicon thin-film transistor technology for polyimide substrates

Gleskova, H. and Wagner, S. and Gašparík, V. and Kováč, P. (2001) 150°C amorphous silicon thin-film transistor technology for polyimide substrates. Journal of the Electrochemical Society, 148 (7). G370-G374. ISSN 0013-4651

[img]
Preview
PDF (Gleskova-JElectrochemSoc-2001)
Gleskova_JElectrochemSoc_2001.pdf - Final Published Version

Download (266kB) | Preview

Abstract

We have developed a 150°C technology for amorphous silicon thin-film transistors (a-Si:H TFTs) on polyimide substrates deposited by plasma enhanced chemical vapor deposition. The silicon nitride gate dielectric and the a-Si:H channel material were tailored to provide the least leakage current and midgap defect density, respectively. In addition, we conducted experiments on the TFT structure and fabrication with the aim of obtaining high electron mobility. TFTs with back-channel etch and channel-passivated structures were fabricated on glass or 51 μm thick polyimide foil. The a-Si:H TFTs have an on/off current ratio of ∼10 7 and an electron mobility of ∼0.7 cm 2/V s.