Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Improving cubic EOSs near the critical point by a phase-space cell approximation

Fornasiero, F. and Lue, L. and Bertucco, A. (1999) Improving cubic EOSs near the critical point by a phase-space cell approximation. AIChE Journal, 45 (4). pp. 906-915. ISSN 0001-1541

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Cubic equations of state (EOSs) are widely used to model the thermodynamic properties of pure fluids and mixtures. However, because they fail to account for the long-range fluctuations existing in a fluid near the critical point, they do not accurately predict the fluid properties in the critical region. Recently, an approximate renormalization group method was developed that can account for these fluctuations.A similar method is applied to provide corrections to a generalized cubic EOS for pure fluids, which is able to represent all classic cubic EOSs. The proposed approach requires two additional parameters:<(c)over bar(RG)> and Delta. The value of <(c)over bar(RG)> is correlated to experimental critical compressibility data, while Delta is set equal to 1. The method is applied to predict the saturated liquid density of fluids of different polarity, and the corrections to the original EOS are found to significantly improve the predictions of this property both far from and close to the critical point. Finally,a correlation is presented for the direct evaluation of the parameter<(c)over bar(RG)> from the value of the critical compressibility factor.