Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Generation of primary hepatocyte microarrays by piezoelectric printing

Zarowna-Dabrowska, Alicja and McKenna, E.O. and Schutte, M.E. and Chen, L. and Allyol, C. and Glidle, A. and Marshall, D. and Pitt, Andrew and Gu, Erdan and Dawson, Martin and Cooper, Jonathan M and Yin, H. (2012) Generation of primary hepatocyte microarrays by piezoelectric printing. Colloids and Surfaces B: Biointerfaces, 89. pp. 126-132. ISSN 0927-7765

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We demonstrate a single-step method for the generation of collagen and poly-l-Lysine (PLL) micropatterns on a poly(ethylene glycol) (PEG) functionalized glass surface for cell based assays. The method involves establishing a reliable silanization method to create an effective non-adhesive PEG layer on glass that inhibits cell attachment, followed by the spotting of collagen or PLL solutions using non-contact piezoelectric printing. We show for the first time that the spotted protein micropatterns remain stable on the PEG surface even after extensive washing, thus significantly simplifying protein pattern formation. We found that adherence and spreading of NIH-3T3 fibroblasts was confined to PLL and collagen areas of the micropatterns. In contrast, primary rat hepatocytes adhered and spread only on collagen micropatterns, where they formed uniform, well defined functionally active cell arrays. The differing affinity of hepatocytes and NIH-3T3 fibroblasts for collagen and PLL patterns was used to develop a simple technique for creating a co-culture of the two cell types. This has the potential to form structured arrays that mimic the in vivo hepatic environment and is easily integrated within a miniaturized analytical platform for developing high throughput toxicity analysis in vitro.