Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Gaussian regression based on models with two stochastic processes

Leithead, W.E. and Neo, K.S. and Leith, D.J. (2005) Gaussian regression based on models with two stochastic processes. In: 16th IFAC World Congress Conference, 2005-07-04 - 2005-07-08.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

When data contains components with different characteristics and it is required to identify both, standard Gaussian regression, based on a model with a single stochastic process, is inadequate. In this paper, a novel adaptation of Gaussian regression, based on models with two stochastic processes, is presented. In both the prior and posterior joint probability distributions, the Gaussian processes for the two components are independent. The effectiveness of the revised Gaussian regression method is demonstrated by application to wind turbine time series data.