Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

EEG classification based on movement direction and displacement

Lakany, H. and Worrajiran, Ponpisut and Valsan, Gopal and Conway, B.A. (2005) EEG classification based on movement direction and displacement. In: 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2005-09-01 - 2005-09-04.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Our aim is to assess and evaluate signal processing and classification methods for extracting features from EEG signals that are useful in developing brain-computer interfaces. In this paper, we report on results of developing a method to classify wrist movements using EEG signals recorded from a subject whilst controlling a joystick and moving it in different directions. Such method could be potentially useful in building brain-computer interfaces (BCIs) where a paralysed person could communicate with a wheelchair and steer it to the desired direction using only EEG signals. Our method is based on extracting salient spatio-temporal features from the EEG signals using continuous wavelet transform. We perform principal component analysis on these features as means to assess their usefulness for classification and to reduce the dimensionality of the problem. We use the results from the PCA as means to represent the different directions. We use a simple technique based on Euclidean distance to classify the data. The classification results show that we are able to discriminate between different directions using the selected features