Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Sphingosine kinase 1 is an intracellular effector of phosphatidic acid

Delon, C. and Manifava, M. and Wood, E. and Thompson, D. and Krugmann, S. and Pyne, S. and Ktistakis, N.T. (2004) Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. Journal of Biological Chemistry, 279. pp. 44763-44774. ISSN 1083-351X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Sphingosine kinase 1 (SK1) phosphorylates sphingosine to generate sphingosine 1-phosphate (S1P). Because both substrate and product of the enzyme are potentially important signaling molecules, the regulation of SK1 is of considerable interest. We report that SK1, which is ordinarily a cytosolic enzyme, translocates in vivo and in vitro to membrane compartments enriched in phosphatidic acid (PA), the lipid product of phospholipase D. This translocation depends on direct interaction of SK1 with PA, because recombinant purified enzyme shows strong affinity for pure PA coupled to Affi-Gel. The SK1-PA interaction maps to the C terminus of SK1 and is independent of catalytic activity or of the diacylglycerol kinase-like domain of the enzyme. Thus SK1 constitutes a novel, physiologically relevant PA effector.