Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Flexible sorption and transformation behavior in a microporous metal-organic framework

Cussen, E. and Claridge, J.B. and Rosseinsky, M.J. and Kepert, C.J. (2002) Flexible sorption and transformation behavior in a microporous metal-organic framework. Journal of American Chemical Society, 124 (32). pp. 9574-9581. ISSN 0002-7863

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Crystals of the metal-organic framework material Ni2(4,4‘-bipyridine)3(NO3)4 (A) have been grown by reaction of Ni(NO3)2·6H2O and 4,4‘-bipyridine in methanol solution. Single-crystal X-ray diffraction experiments show that the ladder structure of the framework is maintained after desolvation of the material, resulting in the production of a porous solid stable to 215(4) °C. Powder X-ray diffraction has been employed to confirm the bulk purity and temperature stability of this material. The crystal structure indicates that the pore window has an area of 12.3 Å2. However, sorption experiments show these windows will admit toluene, which has a minimum cross-sectional area of 26.6 Å2, with no significant change in the structure. Monte Carlo docking calculations show that toluene can be accommodated within the large pores of the structure. Exposure of the related microporous material Ni2(4,4‘-bipyridine)3(NO3)4·2C2H5OH (B) to methanol vapor causes a guest-driven solid-state transformation to A which is observed using powder X-ray diffraction. This structural rearrangement proceeds directly from crystalline B to crystalline A and is complete in less than 1 day. Mechanisms for the transformation are proposed which require breaking of at least one in six of the covalent bonds that confer rigidity on the framework.