Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Non-contact measurement of the mechanical properties of materials using an all optical technique

Culshaw, B. and Pierce, S.G. and Pan, J. (2003) Non-contact measurement of the mechanical properties of materials using an all optical technique. IEEE Sensors Journal, 3 (1). pp. 62-70. ISSN 1530-437X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Describes an optically-based measurement mechanism which realizes a totally noncontact assessment of the most important mechanical properties of structural materials - namely effective stiffness and Poisson ratio. These parameters are sensitive indicators of material integrity. The technique uses laser generated broadband ultrasound as a probe and interferometric optical detection as the detector again exploiting the broadband capability of optics in both space and time. Both detection and excitation systems are most conveniently realized in practical systems through optical fiber linkages. Observing the coupled waveforms between source and detector as a function of source: detector separation after a space : time Fourier transform yields a set of dispersion curves for the ultrasonic (typically Lamb wave) transfer function of the sample. This, in turn, can be inverted using curve fitting routines to obtain effective values of modulus and stiffness. An initial assessment of this inversion process is presented and demonstrates that the effective modulus can be extracted with a confidence level of better than a few percent with slightly larger errors in the Poisson ratio.